Citation: | Zhongwei Chen, Gengyin Wang. Progress and perspectives of rabbit monoclonal antibodies[J]. Blood&Genomics, 2023, 7(1): 13-21. doi: 10.46701/BG.2023012022038 |
[1] |
Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity[J]. Nature, 1975, 256: 495−497. doi: 10.1038/256495a0
|
[2] |
Morgensztern D, Besse B, Greillier L, et al. Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: results from the phase II TRINITY study[J]. Clin Cancer Res, 25(23): 6958–6966.
|
[3] |
Nzuma RM, Liu F, Grant IR. Generation and characterization of a novel recombinant scFv antibody specific for Campylobacter jejuni[J]. Appl Microbiol Biotechnol, 2018, 102(11): 4873−4885. doi: 10.1007/s00253-018-8949-x
|
[4] |
Xu C, Zhang C, Zhong J, et al. Construction of an immunized rabbit phage display library for selecting high activity against Bacillus thuringiensis Cry1F toxin single-chain antibodies[J]. J Agric Food Chem, 2017, 65(29): 6016−6022. doi: 10.1021/acs.jafc.7b01985
|
[5] |
Raybould TJ, Takahashi M. Production of stable rabbit-mouse hybridomas that secrete rabbit mAb of defined specificity[J]. Science, 1988, 240(4860): 1788−1790. doi: 10.1126/science.3289119
|
[6] |
Spieker-Polet H, Sethupathi P, Yam PC, et al. Rabbit monoclonal antibodies: generating a fusion partner to produce rabbit-rabbit hybridomas[J]. Proc Natl Acad Sci U S A, 1995, 92(20): 9348−9352. doi: 10.1073/pnas.92.20.9348
|
[7] |
Yam PC, Knight KL. Generation of rabbit monoclonal antibodies[J]. Methods Mol Biol, 2014, 1131: 71−79. doi: 10.1007/978-1-62703-992-5_5
|
[8] |
Zhu W, Yu GL. Rabbit hybridoma[M]//An Z. Therapeutic Monoclonal Antibodies: From Bench to Clinic. Wiley, 2009, 151–168.
|
[9] |
Medical Device and Diagnostic Industry. Rabbit monoclonal antibody: a new diagnostics technology[EB/OL]. [2013-06-27]. https://www.mddionline.com/news/rabbit-monoclonal-antibody-new-diagnostics-technology
|
[10] |
Ros F, Offner S, Klostermann S, et al. Rabbits transgenic for human IgG genes recapitulating rabbit B-cell biology to generate human antibodies of high specificity and affinity[J]. MAbs, 2020, 12(1): 1846900. doi: 10.1080/19420862.2020.1846900
|
[11] |
Weber J, Peng H, Rader C. From rabbit antibody repertoires to rabbit monoclonal antibodies[J]. Exp Mol Med, 2017, 49(3): e305. doi: 10.1038/emm.2017.23
|
[12] |
Mehta PD, Blain JF, Freeman EA, et al. Generation and partial characterization of rabbit monoclonal antibody to amyloid-β Peptide 1–37 (Aβ37)[J]. J Alzheimers Dis, 2017, 57(1): 135−145. doi: 10.3233/JAD-161207
|
[13] |
Mehta PD, Patrick BA, Barshatzky M, et al. Generation and partial characterization of rabbit monoclonal antibody to pyroglutamate amyloid-β3-42 (pE3-Aβ)[J]. J Alzheimers Dis, 2018, 62(4): 1635−1649. doi: 10.3233/JAD-170898
|
[14] |
Jones PT, Dear PH, Foote J, et al. Replacing the complementarity-determining regions in a human antibody with those from a mouse[J]. Nature, 1986, 321(6069): 522−555. doi: 10.1038/321522a0
|
[15] |
Li Y, Liu M, Kong Y, et al. Significantly improved detection performances of immunoassay for ractopamine in urine based on highly urea-tolerant rabbit monoclonal antibody[J]. Food Chem Toxicol, 2022, 168: 113358. doi: 10.1016/j.fct.2022.113358
|
[16] |
Zhang Z, Liu H, Guan Q, et al. Advances in the isolation of specific monoclonal rabbit antibodies[J]. Front Immunol, 2017, 8: 494. doi: 10.3389/fimmu.2017.00494
|
[17] |
Bystryn JC, Jacobsen JS, Liu P, et al. Comparison of cell-surface human melanoma-associated antigens identified by rabbit and murine antibodies[J]. Hybridoma, 1982, 1(4): 465−472. doi: 10.1089/hyb.1.1982.1.465
|
[18] |
Pan R, Qin Y, Banasik M, et al. Increased epitope complexity correlated with antibody affinity maturation and a novel binding mode revealed by structures of rabbit antibodies against the third variable loop (V3) of HIV-1 gp120[J]. J Virol, 2018, 92(7): e01894−17. doi: 10.1128/JVI.01894-17
|
[19] |
Lis P, Burel S, Steger M, et al. Development of phospho-specific Rab protein antibodies to monitor in vivo activity of the LRRK2 Parkinson's disease kinase[J]. Biochem J, 2018, 475(1): 1−22. doi: 10.1042/BCJ20170802
|
[20] |
Lanning DK, Knight KL. Diversification of the primary antibody repertoire by AID-mediated gene conversion[J]. Results Probl Cell Differ, 2015, 57: 279−293. doi: 10.1007/978-3-319-20819-0_12
|
[21] |
Lavinder JJ, Hoi KH, Reddy ST, et al. Systematic characterization and comparative analysis of the rabbit immunoglobulin repertoire[J]. PLoS One, 2014, 9(6): e101322. doi: 10.1371/journal.pone.0101322
|
[22] |
Kodangattil S, Huard C, Ross C, et al. The functional repertoire of rabbit antibodies and antibody discovery via next-generation sequencing[J]. MAbs, 2014, 6(3): 628−636. doi: 10.4161/mabs.28059
|
[23] |
Lewis CS, Karve A, Matiash K, et al. A first-in-class, humanized antibody targeting alternatively spliced tissue factor: preclinical evaluation in an orthotopic model of pancreatic ductal adenocarcinoma[J]. Front Oncol, 2021, 11: 691685. doi: 10.3389/fonc.2021.691685
|
[24] |
Goydel RS, Weber J, Peng H, et al. Affinity maturation, humanization, and co-crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic appli-cations[J]. J Biol Chem, 2020, 295(18): 5995−6006. doi: 10.1074/jbc.RA120.012791
|
[25] |
Parray HA, Shukla S, Samal S, et al. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives[J]. Int Immunopharmacol, 2020, 85: 106639. doi: 10.1016/j.intimp.2020.106639
|
[26] |
Kawade R, Akiba H, Entzminger K, et al. Roles of the disulfide bond between the variable and the constant domains of rabbit immunoglobulin kappa chains in thermal stability and affinity[J]. Protein Eng Des Sel, 2018, 31(7–8): 243−247. doi: 10.1093/protein/gzy008
|
[27] |
Knight KL, Crane MA. Generating the antibody repertoire in rabbit[J]. Adv Immunol, 1994, 56: 179−218. doi: 10.1016/s0065-2776(08)60452-6
|
[28] |
Subas Satish HP, Zeglinski K, Uren RT, et al. NAb-seq: an accurate, rapid, and cost-effective method for antibody long-read sequencing in hybridoma cell lines and single B cells[J]. MAbs, 2022, 14(1): 2106621. doi: 10.1080/19420862.2022.2106621
|
[29] |
Hemadou A, Laroche-Traineau J, Antoine S, et al. An innovative flow cytometry method to screen human scFv-phages selected by in vivo phage-display in an animal model of atherosclerosis[J]. Sci Rep, 2018, 8(1): 15016. doi: 10.1038/s41598-018-33382-2
|
[30] |
Liguori MJ, Hoff-Velk JA, Ostrow DH. Recombinant human interleukin-6 enhances the immunoglobulin secretion of a rabbit-rabbit hybridoma[J]. Hybridoma, 2001, 20(3): 189−198. doi: 10.1089/027245701750293529
|
[31] |
Hoogenboom HR. Selecting and screening recombinant antibody libraries[J]. Nat Biotechnol, 2005, 23(9): 1105−1116. doi: 10.1038/nbt1126
|
[32] |
Tomszak F, Weber S, Zantow J, et al. Selection of recombinant human antibodies[J]. Adv Exp Med Biol, 2016, 917: 23−54. doi: 10.1007/978-3-319-32805-8_3
|
[33] |
Sompunga P, Pruksametanan N, Rangnoi K, et al. Generation of human and rabbit recombinant antibodies for the detection of Zearalenone by phage display antibody technology[J]. Talanta, 2019, 201: 397−405. doi: 10.1016/j.talanta.2019.04.034
|
[34] |
Nagano K, Tsutsumi Y. Phage display technology as a powerful platform for antibody drug discovery[J]. Viruses, 2021, 13(2): 178. doi: 10.3390/v13020178
|
[35] |
Zambrano N, Froechlich G, Lazarevic D, et al. High-throughput monoclonal antibody discovery from phage libraries: challenging the current preclinical pipeline to keep the pace with the increasing mAb demand[J]. Cancers (Basel), 2022, 14(5): 1325. doi: 10.3390/cancers14051325
|
[36] |
André AS, Moutinho I, Dias JNR, et al. In vivo phage display: a promising selection strategy for the improvement of antibody targeting and drug delivery properties[J]. Front Microbiol, 2022, 13: 962124. doi: 10.3389/fmicb.2022.962124
|
[37] |
Laustsen AH, Greiff V, Karatt-Vellatt A, et al. Animal immunization, in vitro display technologies, and machine learning for antibody discovery[J]. Trends Biotechnol, 2021, 39(12): 1263−1273. doi: 10.1016/j.tibtech.2021.03.003
|
[38] |
Aguiar SI, Dias JNR, André AS, et al. Highly specific blood-brain barrier transmigrating single-domain antibodies selected by an in vivo phage display screening[J]. Pharmaceutics, 2021, 13(10): 1598. doi: 10.3390/pharmaceutics13101598
|
[39] |
Davies CW, Stowe I, Phung QT, et al. Discovery of a caspase cleavage motif antibody reveals insights into noncanonical inflammasome function[J]. Proc Natl Acad Sci U S A, 2021, 118(12): e2018024118. doi: 10.1073/pnas.2018024118
|
[40] |
Mahdavi SZB, Oroojalian F, Eyvazi S, et al. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages[J]. Int J Biol Macromol, 2022, 208: 421−442. doi: 10.1016/j.ijbiomac.2022.03.113
|
[41] |
Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, et al. Phage display and other peptide display technologies[J]. FEMS Microbiol Rev, 2022, 46(2): fuab052. doi: 10.1093/femsre/fuab052
|
[42] |
Wellner A, McMahon C, Gilman MSA, et al. Rapid generation of potent antibodies by autonomous hypermutation in yeast[J]. Nat Chem Biol, 2021, 17(10): 1057−1064. doi: 10.1038/s41589-021-00832-4
|
[43] |
Li R, Kang G, Hu M, et al. Ribosome display: a potent display technology used for selecting and evolving specific binders with desired properties[J]. Mol Biotechnol, 2019, 61(1): 60−71. doi: 10.1007/s12033-018-0133-0
|
[44] |
Rashidian J, Lloyd J. Single B cell cloning and production of rabbit monoclonal antibodies[J]. Methods Mol Biol, 2020, 2070: 423−441. doi: 10.1007/978-1-4939-9853-1_23
|
[45] |
Pedrioli A, Oxenius A. Single B cell technologies for monoclonal antibody discovery[J]. Trends Immunol, 2021, 42(12): 1143−1158. doi: 10.1016/j.it.2021.10.008
|
[46] |
Lin W, Liang WC, Nguy T, et al. Rapid identification of anti-idiotypic mAbs with high affinity and diverse epitopes by rabbit single B-cell sorting-culture and cloning technology[J]. PLoS One, 2020, 15(12): e0244158. doi: 10.1371/journal.pone.0244158
|
[47] |
Clargo AM, Hudson AR, Ndlovu W, et al. The rapid generation of recombinant functional monoclonal antibodies from individual, antigen-specific bone marrow-derived plasma cells isolated using a novel fluorescence-based method[J]. MAbs, 2014, 6(1): 143−159. doi: 10.4161/mabs.27044
|
[48] |
Seeber S, Ros F, Thorey I, et al. A robust high throughput platform to generate functional recombinant monoclonal antibodies using rabbit B cells from peripheral blood[J]. PLoS One, 2014, 9(2): e86184. doi: 10.1371/journal.pone.0086184
|
[49] |
Kivi G, Teesalu K, Parik J, et al. HybriFree: a robust and rapid method for the development of monoclonal antibodies from different host species[J]. BMC Biotechnol, 2016, 16: 2. doi: 10.1186/s12896-016-0232-6
|
[50] |
Starkie DO, Compson JE, Rapecki S, et al. Generation of recombinant monoclonal antibodies from immunised mice and rabbits via flow cytometry and sorting of antigen-specific IgG+ memory B cells[J]. PLoS One, 2016, 11(3): e0152282. doi: 10.1371/journal.pone.0152282
|
[51] |
Kishi H, Ozawa T, Hamana H, et al. Isolation of antigen-specific, antibody-secreting cells using a chip-based immunospot array[J]. Methods Mol Biol, 2019, 1904: 147−162. doi: 10.1007/978-1-4939-8958-4_6
|
[52] |
Cossarizza A, Chang HD, Radbruch A, et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)[J]. Eur J Immunol, 2019, 49(10): 1457−1973. doi: 10.1002/eji.201970107
|
[53] |
Poitevin Y, Pontini G, Fischer N, et al. Magnetic sorting of membrane associated IgG for phenotype-based selection of stable antibody producing cells[J]. J Immunol Methods, 2017, 444: 1−6. doi: 10.1016/j.jim.2017.02.004
|
[54] |
Berkeleylights. DATASHEET: Opto® Memory B Discovery Rabbit Workflow[EB/OL]. https://www.berkeleylights.com/resources/datasheet-opto-memory-b-discovery-rabbit-workflow/
|
[55] |
Josephides D, Davoli S, Whitley W, et al. Cyto-Mine: an integrated, picodroplet system for high-throughput single-cell analysis, sorting, dispensing, and monoclonality assurance[J]. SLAS Technol, 2020, 25(2): 177−189. doi: 10.1177/2472630319892571
|
[56] |
Singalway Atibody Company. Recombinant Monoclonal and Single-B-Cell Antibody (RmSabTM) Technology [EB/OL]. https://www.sabbiotech.com.cn/topic/Recombinant/Recombinant2.html
|
[57] |
Guo H, Yang Y, Zhao T, et al. Mechanism of a rabbit monoclonal antibody broadly neutralizing SARS-CoV-2 variants[J]. Commun Biol, 2023, 6(1): 364. doi: 10.1038/s42003-023-04759-5
|
[58] |
Ojima-Kato T, Hashimura D, Kojima T, et al. In vitro generation of rabbit anti-Listeria monocytogenes monoclonal antibody using single cell based RT-PCR linked cell-free expression systems[J]. J Immunol Methods, 2015, 427: 58−65. doi: 10.1016/j.jim.2015.10.001
|
[59] |
Wine Y, Boutz DR, Lavinder JJ, et al. Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response[J]. Proc Natl Acad Sci U S A, 2013, 110(8): 2993−2998. doi: 10.1073/pnas.1213737110
|
[60] |
Sila-On D, Chertchinnapa P, Shinkai Y, et al. Development of a dual monoclonal antibody sandwich enzyme-linked immunosorbent assay for the detection of swine influenza virus using rabbit monoclonal antibody by Ecobody technology[J]. J Biosci Bioeng, 2020, 130(2): 217−225. doi: 10.1016/j.jbiosc.2020.03.003
|
[61] |
Mage RG, Esteves PJ, Rader C. Rabbit models of human diseases for diagnostics and therapeutics development[J]. Dev Comp Immunol, 2019, 92: 99−104. doi: 10.1016/j.dci.2018.10.003
|
[62] |
Hong J, Wang Q, Wu Q, et al. Rabbit monoclonal antibody specifically recognizing a linear epitope in the RBD of SARS-CoV-2 spike protein[J]. Vaccines (Basel), 2021, 9(8): 829. doi: 10.3390/vaccines9080829
|
[63] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209−249. doi: 10.3322/caac.21660
|
[64] |
Liu N, Han Z, Lu L, et al. Development of a new rabbit monoclonal antibody and its based competitive indirect enzyme-linked immunosorbent assay for rapid detection of sulfonamides[J]. J Sci Food Agric, 2013, 93(3): 667−673. doi: 10.1002/jsfa.5945
|
[65] |
Onder S, van Grol M, Fidder A, et al. Rabbit antidiethoxyphosphotyrosine antibody, made by single B cell cloning, detects chlorpyrifos oxon-modified proteins in cultured cells and immunopurifies modified peptides for mass spectrometry[J]. J Proteome Res, 2021, 20(10): 4728−4745. doi: 10.1021/acs.jproteome.1c00383
|
[66] |
Miyoshi S, Tokunaga S, Ozawa T, et al. Production of a rabbit monoclonal antibody for highly sensitive detection of citrus mosaic virus and related viruses[J]. PLoS One, 2020, 15(4): e0229196. doi: 10.1371/journal.pone.0229196
|