Volume 7 Issue 1
Jun.  2023
Turn off MathJax
Article Contents
Zhongwei Chen, Gengyin Wang. Progress and perspectives of rabbit monoclonal antibodies[J]. Blood&Genomics, 2023, 7(1): 13-21. doi: 10.46701/BG.2023012022038
Citation: Zhongwei Chen, Gengyin Wang. Progress and perspectives of rabbit monoclonal antibodies[J]. Blood&Genomics, 2023, 7(1): 13-21. doi: 10.46701/BG.2023012022038

Progress and perspectives of rabbit monoclonal antibodies

doi: 10.46701/BG.2023012022038
More Information
  • Corresponding author: Gengyin Wang, Jiangsu LIBO Medicine Biotechnology Co., Ltd., 78 Dongsheng West Road, Jiangyin, Jiangsu 214400, China. E-mail: WGYLBbio@yeah.net
  • Received Date: 2022-12-16
  • Rev Recd Date: 2023-02-22
  • Accepted Date: 2023-04-04
  • Available Online: 2023-06-01
  • Publish Date: 2023-06-30
  • Since the advent of murine hybridomas, the emergence of a variety of monoclonal antibody (mAb) technologies has enabled the wide applications of murine monoclonal antibodies in medicine, life science, agronomy, and food science. Compared with murine monoclonal antibodies, rabbit monoclonal antibodies (RabmAbs) exhibit higher affinity, presenting with increased detection sensitivity and greater specificity for the particular structure of epitopes. This paper reviews the history, preparation techniques, advantages and disadvantages, current applications, and future perspectives for RabmAbs.

     

  • loading
  • [1]
    Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity[J]. Nature, 1975, 256: 495−497. doi: 10.1038/256495a0
    [2]
    Morgensztern D, Besse B, Greillier L, et al. Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: results from the phase II TRINITY study[J]. Clin Cancer Res, 25(23): 6958–6966.
    [3]
    Nzuma RM, Liu F, Grant IR. Generation and characterization of a novel recombinant scFv antibody specific for Campylobacter jejuni[J]. Appl Microbiol Biotechnol, 2018, 102(11): 4873−4885. doi: 10.1007/s00253-018-8949-x
    [4]
    Xu C, Zhang C, Zhong J, et al. Construction of an immunized rabbit phage display library for selecting high activity against Bacillus thuringiensis Cry1F toxin single-chain antibodies[J]. J Agric Food Chem, 2017, 65(29): 6016−6022. doi: 10.1021/acs.jafc.7b01985
    [5]
    Raybould TJ, Takahashi M. Production of stable rabbit-mouse hybridomas that secrete rabbit mAb of defined specificity[J]. Science, 1988, 240(4860): 1788−1790. doi: 10.1126/science.3289119
    [6]
    Spieker-Polet H, Sethupathi P, Yam PC, et al. Rabbit monoclonal antibodies: generating a fusion partner to produce rabbit-rabbit hybridomas[J]. Proc Natl Acad Sci U S A, 1995, 92(20): 9348−9352. doi: 10.1073/pnas.92.20.9348
    [7]
    Yam PC, Knight KL. Generation of rabbit monoclonal antibodies[J]. Methods Mol Biol, 2014, 1131: 71−79. doi: 10.1007/978-1-62703-992-5_5
    [8]
    Zhu W, Yu GL. Rabbit hybridoma[M]//An Z. Therapeutic Monoclonal Antibodies: From Bench to Clinic. Wiley, 2009, 151–168.
    [9]
    Medical Device and Diagnostic Industry. Rabbit monoclonal antibody: a new diagnostics technology[EB/OL]. [2013-06-27]. https://www.mddionline.com/news/rabbit-monoclonal-antibody-new-diagnostics-technology
    [10]
    Ros F, Offner S, Klostermann S, et al. Rabbits transgenic for human IgG genes recapitulating rabbit B-cell biology to generate human antibodies of high specificity and affinity[J]. MAbs, 2020, 12(1): 1846900. doi: 10.1080/19420862.2020.1846900
    [11]
    Weber J, Peng H, Rader C. From rabbit antibody repertoires to rabbit monoclonal antibodies[J]. Exp Mol Med, 2017, 49(3): e305. doi: 10.1038/emm.2017.23
    [12]
    Mehta PD, Blain JF, Freeman EA, et al. Generation and partial characterization of rabbit monoclonal antibody to amyloid-β Peptide 1–37 (Aβ37)[J]. J Alzheimers Dis, 2017, 57(1): 135−145. doi: 10.3233/JAD-161207
    [13]
    Mehta PD, Patrick BA, Barshatzky M, et al. Generation and partial characterization of rabbit monoclonal antibody to pyroglutamate amyloid-β3-42 (pE3-Aβ)[J]. J Alzheimers Dis, 2018, 62(4): 1635−1649. doi: 10.3233/JAD-170898
    [14]
    Jones PT, Dear PH, Foote J, et al. Replacing the complementarity-determining regions in a human antibody with those from a mouse[J]. Nature, 1986, 321(6069): 522−555. doi: 10.1038/321522a0
    [15]
    Li Y, Liu M, Kong Y, et al. Significantly improved detection performances of immunoassay for ractopamine in urine based on highly urea-tolerant rabbit monoclonal antibody[J]. Food Chem Toxicol, 2022, 168: 113358. doi: 10.1016/j.fct.2022.113358
    [16]
    Zhang Z, Liu H, Guan Q, et al. Advances in the isolation of specific monoclonal rabbit antibodies[J]. Front Immunol, 2017, 8: 494. doi: 10.3389/fimmu.2017.00494
    [17]
    Bystryn JC, Jacobsen JS, Liu P, et al. Comparison of cell-surface human melanoma-associated antigens identified by rabbit and murine antibodies[J]. Hybridoma, 1982, 1(4): 465−472. doi: 10.1089/hyb.1.1982.1.465
    [18]
    Pan R, Qin Y, Banasik M, et al. Increased epitope complexity correlated with antibody affinity maturation and a novel binding mode revealed by structures of rabbit antibodies against the third variable loop (V3) of HIV-1 gp120[J]. J Virol, 2018, 92(7): e01894−17. doi: 10.1128/JVI.01894-17
    [19]
    Lis P, Burel S, Steger M, et al. Development of phospho-specific Rab protein antibodies to monitor in vivo activity of the LRRK2 Parkinson's disease kinase[J]. Biochem J, 2018, 475(1): 1−22. doi: 10.1042/BCJ20170802
    [20]
    Lanning DK, Knight KL. Diversification of the primary antibody repertoire by AID-mediated gene conversion[J]. Results Probl Cell Differ, 2015, 57: 279−293. doi: 10.1007/978-3-319-20819-0_12
    [21]
    Lavinder JJ, Hoi KH, Reddy ST, et al. Systematic characterization and comparative analysis of the rabbit immunoglobulin repertoire[J]. PLoS One, 2014, 9(6): e101322. doi: 10.1371/journal.pone.0101322
    [22]
    Kodangattil S, Huard C, Ross C, et al. The functional repertoire of rabbit antibodies and antibody discovery via next-generation sequencing[J]. MAbs, 2014, 6(3): 628−636. doi: 10.4161/mabs.28059
    [23]
    Lewis CS, Karve A, Matiash K, et al. A first-in-class, humanized antibody targeting alternatively spliced tissue factor: preclinical evaluation in an orthotopic model of pancreatic ductal adenocarcinoma[J]. Front Oncol, 2021, 11: 691685. doi: 10.3389/fonc.2021.691685
    [24]
    Goydel RS, Weber J, Peng H, et al. Affinity maturation, humanization, and co-crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic appli-cations[J]. J Biol Chem, 2020, 295(18): 5995−6006. doi: 10.1074/jbc.RA120.012791
    [25]
    Parray HA, Shukla S, Samal S, et al. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives[J]. Int Immunopharmacol, 2020, 85: 106639. doi: 10.1016/j.intimp.2020.106639
    [26]
    Kawade R, Akiba H, Entzminger K, et al. Roles of the disulfide bond between the variable and the constant domains of rabbit immunoglobulin kappa chains in thermal stability and affinity[J]. Protein Eng Des Sel, 2018, 31(7–8): 243−247. doi: 10.1093/protein/gzy008
    [27]
    Knight KL, Crane MA. Generating the antibody repertoire in rabbit[J]. Adv Immunol, 1994, 56: 179−218. doi: 10.1016/s0065-2776(08)60452-6
    [28]
    Subas Satish HP, Zeglinski K, Uren RT, et al. NAb-seq: an accurate, rapid, and cost-effective method for antibody long-read sequencing in hybridoma cell lines and single B cells[J]. MAbs, 2022, 14(1): 2106621. doi: 10.1080/19420862.2022.2106621
    [29]
    Hemadou A, Laroche-Traineau J, Antoine S, et al. An innovative flow cytometry method to screen human scFv-phages selected by in vivo phage-display in an animal model of atherosclerosis[J]. Sci Rep, 2018, 8(1): 15016. doi: 10.1038/s41598-018-33382-2
    [30]
    Liguori MJ, Hoff-Velk JA, Ostrow DH. Recombinant human interleukin-6 enhances the immunoglobulin secretion of a rabbit-rabbit hybridoma[J]. Hybridoma, 2001, 20(3): 189−198. doi: 10.1089/027245701750293529
    [31]
    Hoogenboom HR. Selecting and screening recombinant antibody libraries[J]. Nat Biotechnol, 2005, 23(9): 1105−1116. doi: 10.1038/nbt1126
    [32]
    Tomszak F, Weber S, Zantow J, et al. Selection of recombinant human antibodies[J]. Adv Exp Med Biol, 2016, 917: 23−54. doi: 10.1007/978-3-319-32805-8_3
    [33]
    Sompunga P, Pruksametanan N, Rangnoi K, et al. Generation of human and rabbit recombinant antibodies for the detection of Zearalenone by phage display antibody technology[J]. Talanta, 2019, 201: 397−405. doi: 10.1016/j.talanta.2019.04.034
    [34]
    Nagano K, Tsutsumi Y. Phage display technology as a powerful platform for antibody drug discovery[J]. Viruses, 2021, 13(2): 178. doi: 10.3390/v13020178
    [35]
    Zambrano N, Froechlich G, Lazarevic D, et al. High-throughput monoclonal antibody discovery from phage libraries: challenging the current preclinical pipeline to keep the pace with the increasing mAb demand[J]. Cancers (Basel), 2022, 14(5): 1325. doi: 10.3390/cancers14051325
    [36]
    André AS, Moutinho I, Dias JNR, et al. In vivo phage display: a promising selection strategy for the improvement of antibody targeting and drug delivery properties[J]. Front Microbiol, 2022, 13: 962124. doi: 10.3389/fmicb.2022.962124
    [37]
    Laustsen AH, Greiff V, Karatt-Vellatt A, et al. Animal immunization, in vitro display technologies, and machine learning for antibody discovery[J]. Trends Biotechnol, 2021, 39(12): 1263−1273. doi: 10.1016/j.tibtech.2021.03.003
    [38]
    Aguiar SI, Dias JNR, André AS, et al. Highly specific blood-brain barrier transmigrating single-domain antibodies selected by an in vivo phage display screening[J]. Pharmaceutics, 2021, 13(10): 1598. doi: 10.3390/pharmaceutics13101598
    [39]
    Davies CW, Stowe I, Phung QT, et al. Discovery of a caspase cleavage motif antibody reveals insights into noncanonical inflammasome function[J]. Proc Natl Acad Sci U S A, 2021, 118(12): e2018024118. doi: 10.1073/pnas.2018024118
    [40]
    Mahdavi SZB, Oroojalian F, Eyvazi S, et al. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages[J]. Int J Biol Macromol, 2022, 208: 421−442. doi: 10.1016/j.ijbiomac.2022.03.113
    [41]
    Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, et al. Phage display and other peptide display technologies[J]. FEMS Microbiol Rev, 2022, 46(2): fuab052. doi: 10.1093/femsre/fuab052
    [42]
    Wellner A, McMahon C, Gilman MSA, et al. Rapid generation of potent antibodies by autonomous hypermutation in yeast[J]. Nat Chem Biol, 2021, 17(10): 1057−1064. doi: 10.1038/s41589-021-00832-4
    [43]
    Li R, Kang G, Hu M, et al. Ribosome display: a potent display technology used for selecting and evolving specific binders with desired properties[J]. Mol Biotechnol, 2019, 61(1): 60−71. doi: 10.1007/s12033-018-0133-0
    [44]
    Rashidian J, Lloyd J. Single B cell cloning and production of rabbit monoclonal antibodies[J]. Methods Mol Biol, 2020, 2070: 423−441. doi: 10.1007/978-1-4939-9853-1_23
    [45]
    Pedrioli A, Oxenius A. Single B cell technologies for monoclonal antibody discovery[J]. Trends Immunol, 2021, 42(12): 1143−1158. doi: 10.1016/j.it.2021.10.008
    [46]
    Lin W, Liang WC, Nguy T, et al. Rapid identification of anti-idiotypic mAbs with high affinity and diverse epitopes by rabbit single B-cell sorting-culture and cloning technology[J]. PLoS One, 2020, 15(12): e0244158. doi: 10.1371/journal.pone.0244158
    [47]
    Clargo AM, Hudson AR, Ndlovu W, et al. The rapid generation of recombinant functional monoclonal antibodies from individual, antigen-specific bone marrow-derived plasma cells isolated using a novel fluorescence-based method[J]. MAbs, 2014, 6(1): 143−159. doi: 10.4161/mabs.27044
    [48]
    Seeber S, Ros F, Thorey I, et al. A robust high throughput platform to generate functional recombinant monoclonal antibodies using rabbit B cells from peripheral blood[J]. PLoS One, 2014, 9(2): e86184. doi: 10.1371/journal.pone.0086184
    [49]
    Kivi G, Teesalu K, Parik J, et al. HybriFree: a robust and rapid method for the development of monoclonal antibodies from different host species[J]. BMC Biotechnol, 2016, 16: 2. doi: 10.1186/s12896-016-0232-6
    [50]
    Starkie DO, Compson JE, Rapecki S, et al. Generation of recombinant monoclonal antibodies from immunised mice and rabbits via flow cytometry and sorting of antigen-specific IgG+ memory B cells[J]. PLoS One, 2016, 11(3): e0152282. doi: 10.1371/journal.pone.0152282
    [51]
    Kishi H, Ozawa T, Hamana H, et al. Isolation of antigen-specific, antibody-secreting cells using a chip-based immunospot array[J]. Methods Mol Biol, 2019, 1904: 147−162. doi: 10.1007/978-1-4939-8958-4_6
    [52]
    Cossarizza A, Chang HD, Radbruch A, et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)[J]. Eur J Immunol, 2019, 49(10): 1457−1973. doi: 10.1002/eji.201970107
    [53]
    Poitevin Y, Pontini G, Fischer N, et al. Magnetic sorting of membrane associated IgG for phenotype-based selection of stable antibody producing cells[J]. J Immunol Methods, 2017, 444: 1−6. doi: 10.1016/j.jim.2017.02.004
    [54]
    Berkeleylights. DATASHEET: Opto® Memory B Discovery Rabbit Workflow[EB/OL]. https://www.berkeleylights.com/resources/datasheet-opto-memory-b-discovery-rabbit-workflow/
    [55]
    Josephides D, Davoli S, Whitley W, et al. Cyto-Mine: an integrated, picodroplet system for high-throughput single-cell analysis, sorting, dispensing, and monoclonality assurance[J]. SLAS Technol, 2020, 25(2): 177−189. doi: 10.1177/2472630319892571
    [56]
    Singalway Atibody Company. Recombinant Monoclonal and Single-B-Cell Antibody (RmSabTM) Technology [EB/OL]. https://www.sabbiotech.com.cn/topic/Recombinant/Recombinant2.html
    [57]
    Guo H, Yang Y, Zhao T, et al. Mechanism of a rabbit monoclonal antibody broadly neutralizing SARS-CoV-2 variants[J]. Commun Biol, 2023, 6(1): 364. doi: 10.1038/s42003-023-04759-5
    [58]
    Ojima-Kato T, Hashimura D, Kojima T, et al. In vitro generation of rabbit anti-Listeria monocytogenes monoclonal antibody using single cell based RT-PCR linked cell-free expression systems[J]. J Immunol Methods, 2015, 427: 58−65. doi: 10.1016/j.jim.2015.10.001
    [59]
    Wine Y, Boutz DR, Lavinder JJ, et al. Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response[J]. Proc Natl Acad Sci U S A, 2013, 110(8): 2993−2998. doi: 10.1073/pnas.1213737110
    [60]
    Sila-On D, Chertchinnapa P, Shinkai Y, et al. Development of a dual monoclonal antibody sandwich enzyme-linked immunosorbent assay for the detection of swine influenza virus using rabbit monoclonal antibody by Ecobody technology[J]. J Biosci Bioeng, 2020, 130(2): 217−225. doi: 10.1016/j.jbiosc.2020.03.003
    [61]
    Mage RG, Esteves PJ, Rader C. Rabbit models of human diseases for diagnostics and therapeutics development[J]. Dev Comp Immunol, 2019, 92: 99−104. doi: 10.1016/j.dci.2018.10.003
    [62]
    Hong J, Wang Q, Wu Q, et al. Rabbit monoclonal antibody specifically recognizing a linear epitope in the RBD of SARS-CoV-2 spike protein[J]. Vaccines (Basel), 2021, 9(8): 829. doi: 10.3390/vaccines9080829
    [63]
    Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209−249. doi: 10.3322/caac.21660
    [64]
    Liu N, Han Z, Lu L, et al. Development of a new rabbit monoclonal antibody and its based competitive indirect enzyme-linked immunosorbent assay for rapid detection of sulfonamides[J]. J Sci Food Agric, 2013, 93(3): 667−673. doi: 10.1002/jsfa.5945
    [65]
    Onder S, van Grol M, Fidder A, et al. Rabbit antidiethoxyphosphotyrosine antibody, made by single B cell cloning, detects chlorpyrifos oxon-modified proteins in cultured cells and immunopurifies modified peptides for mass spectrometry[J]. J Proteome Res, 2021, 20(10): 4728−4745. doi: 10.1021/acs.jproteome.1c00383
    [66]
    Miyoshi S, Tokunaga S, Ozawa T, et al. Production of a rabbit monoclonal antibody for highly sensitive detection of citrus mosaic virus and related viruses[J]. PLoS One, 2020, 15(4): e0229196. doi: 10.1371/journal.pone.0229196
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article Metrics

    Article views (346) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return