Volume 7 Issue 1
Jun.  2023
Turn off MathJax
Article Contents
Zhongwei Chen, Gengyin Wang. Progress and perspectives of rabbit monoclonal antibodies[J]. Blood&Genomics, 2023, 7(1): 13-21. doi: 10.46701/BG.2023012022038
Citation: Zhongwei Chen, Gengyin Wang. Progress and perspectives of rabbit monoclonal antibodies[J]. Blood&Genomics, 2023, 7(1): 13-21. doi: 10.46701/BG.2023012022038

Progress and perspectives of rabbit monoclonal antibodies

doi: 10.46701/BG.2023012022038
More Information
  • Corresponding author: Gengyin Wang, Jiangsu LIBO Medicine Biotechnology Co., Ltd., 78 Dongsheng West Road, Jiangyin, Jiangsu 214400, China. E-mail: WGYLBbio@yeah.net
  • Received Date: 2022-12-16
  • Rev Recd Date: 2023-02-22
  • Accepted Date: 2023-04-04
  • Available Online: 2023-06-01
  • Publish Date: 2023-06-30
  • Since the advent of murine hybridomas, the emergence of a variety of monoclonal antibody (mAb) technologies has enabled the wide applications of murine monoclonal antibodies in medicine, life science, agronomy, and food science. Compared with murine monoclonal antibodies, rabbit monoclonal antibodies (RabmAbs) exhibit higher affinity, presenting with increased detection sensitivity and greater specificity for the particular structure of epitopes. This paper reviews the history, preparation techniques, advantages and disadvantages, current applications, and future perspectives for RabmAbs.


  • loading
  • [1]
    Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity[J]. Nature, 1975, 256: 495−497. doi: 10.1038/256495a0
    Morgensztern D, Besse B, Greillier L, et al. Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: results from the phase II TRINITY study[J]. Clin Cancer Res, 25(23): 6958–6966.
    Nzuma RM, Liu F, Grant IR. Generation and characterization of a novel recombinant scFv antibody specific for Campylobacter jejuni[J]. Appl Microbiol Biotechnol, 2018, 102(11): 4873−4885. doi: 10.1007/s00253-018-8949-x
    Xu C, Zhang C, Zhong J, et al. Construction of an immunized rabbit phage display library for selecting high activity against Bacillus thuringiensis Cry1F toxin single-chain antibodies[J]. J Agric Food Chem, 2017, 65(29): 6016−6022. doi: 10.1021/acs.jafc.7b01985
    Raybould TJ, Takahashi M. Production of stable rabbit-mouse hybridomas that secrete rabbit mAb of defined specificity[J]. Science, 1988, 240(4860): 1788−1790. doi: 10.1126/science.3289119
    Spieker-Polet H, Sethupathi P, Yam PC, et al. Rabbit monoclonal antibodies: generating a fusion partner to produce rabbit-rabbit hybridomas[J]. Proc Natl Acad Sci U S A, 1995, 92(20): 9348−9352. doi: 10.1073/pnas.92.20.9348
    Yam PC, Knight KL. Generation of rabbit monoclonal antibodies[J]. Methods Mol Biol, 2014, 1131: 71−79. doi: 10.1007/978-1-62703-992-5_5
    Zhu W, Yu GL. Rabbit hybridoma[M]//An Z. Therapeutic Monoclonal Antibodies: From Bench to Clinic. Wiley, 2009, 151–168.
    Medical Device and Diagnostic Industry. Rabbit monoclonal antibody: a new diagnostics technology[EB/OL]. [2013-06-27]. https://www.mddionline.com/news/rabbit-monoclonal-antibody-new-diagnostics-technology
    Ros F, Offner S, Klostermann S, et al. Rabbits transgenic for human IgG genes recapitulating rabbit B-cell biology to generate human antibodies of high specificity and affinity[J]. MAbs, 2020, 12(1): 1846900. doi: 10.1080/19420862.2020.1846900
    Weber J, Peng H, Rader C. From rabbit antibody repertoires to rabbit monoclonal antibodies[J]. Exp Mol Med, 2017, 49(3): e305. doi: 10.1038/emm.2017.23
    Mehta PD, Blain JF, Freeman EA, et al. Generation and partial characterization of rabbit monoclonal antibody to amyloid-β Peptide 1–37 (Aβ37)[J]. J Alzheimers Dis, 2017, 57(1): 135−145. doi: 10.3233/JAD-161207
    Mehta PD, Patrick BA, Barshatzky M, et al. Generation and partial characterization of rabbit monoclonal antibody to pyroglutamate amyloid-β3-42 (pE3-Aβ)[J]. J Alzheimers Dis, 2018, 62(4): 1635−1649. doi: 10.3233/JAD-170898
    Jones PT, Dear PH, Foote J, et al. Replacing the complementarity-determining regions in a human antibody with those from a mouse[J]. Nature, 1986, 321(6069): 522−555. doi: 10.1038/321522a0
    Li Y, Liu M, Kong Y, et al. Significantly improved detection performances of immunoassay for ractopamine in urine based on highly urea-tolerant rabbit monoclonal antibody[J]. Food Chem Toxicol, 2022, 168: 113358. doi: 10.1016/j.fct.2022.113358
    Zhang Z, Liu H, Guan Q, et al. Advances in the isolation of specific monoclonal rabbit antibodies[J]. Front Immunol, 2017, 8: 494. doi: 10.3389/fimmu.2017.00494
    Bystryn JC, Jacobsen JS, Liu P, et al. Comparison of cell-surface human melanoma-associated antigens identified by rabbit and murine antibodies[J]. Hybridoma, 1982, 1(4): 465−472. doi: 10.1089/hyb.1.1982.1.465
    Pan R, Qin Y, Banasik M, et al. Increased epitope complexity correlated with antibody affinity maturation and a novel binding mode revealed by structures of rabbit antibodies against the third variable loop (V3) of HIV-1 gp120[J]. J Virol, 2018, 92(7): e01894−17. doi: 10.1128/JVI.01894-17
    Lis P, Burel S, Steger M, et al. Development of phospho-specific Rab protein antibodies to monitor in vivo activity of the LRRK2 Parkinson's disease kinase[J]. Biochem J, 2018, 475(1): 1−22. doi: 10.1042/BCJ20170802
    Lanning DK, Knight KL. Diversification of the primary antibody repertoire by AID-mediated gene conversion[J]. Results Probl Cell Differ, 2015, 57: 279−293. doi: 10.1007/978-3-319-20819-0_12
    Lavinder JJ, Hoi KH, Reddy ST, et al. Systematic characterization and comparative analysis of the rabbit immunoglobulin repertoire[J]. PLoS One, 2014, 9(6): e101322. doi: 10.1371/journal.pone.0101322
    Kodangattil S, Huard C, Ross C, et al. The functional repertoire of rabbit antibodies and antibody discovery via next-generation sequencing[J]. MAbs, 2014, 6(3): 628−636. doi: 10.4161/mabs.28059
    Lewis CS, Karve A, Matiash K, et al. A first-in-class, humanized antibody targeting alternatively spliced tissue factor: preclinical evaluation in an orthotopic model of pancreatic ductal adenocarcinoma[J]. Front Oncol, 2021, 11: 691685. doi: 10.3389/fonc.2021.691685
    Goydel RS, Weber J, Peng H, et al. Affinity maturation, humanization, and co-crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic appli-cations[J]. J Biol Chem, 2020, 295(18): 5995−6006. doi: 10.1074/jbc.RA120.012791
    Parray HA, Shukla S, Samal S, et al. Hybridoma technology a versatile method for isolation of monoclonal antibodies, its applicability across species, limitations, advancement and future perspectives[J]. Int Immunopharmacol, 2020, 85: 106639. doi: 10.1016/j.intimp.2020.106639
    Kawade R, Akiba H, Entzminger K, et al. Roles of the disulfide bond between the variable and the constant domains of rabbit immunoglobulin kappa chains in thermal stability and affinity[J]. Protein Eng Des Sel, 2018, 31(7–8): 243−247. doi: 10.1093/protein/gzy008
    Knight KL, Crane MA. Generating the antibody repertoire in rabbit[J]. Adv Immunol, 1994, 56: 179−218. doi: 10.1016/s0065-2776(08)60452-6
    Subas Satish HP, Zeglinski K, Uren RT, et al. NAb-seq: an accurate, rapid, and cost-effective method for antibody long-read sequencing in hybridoma cell lines and single B cells[J]. MAbs, 2022, 14(1): 2106621. doi: 10.1080/19420862.2022.2106621
    Hemadou A, Laroche-Traineau J, Antoine S, et al. An innovative flow cytometry method to screen human scFv-phages selected by in vivo phage-display in an animal model of atherosclerosis[J]. Sci Rep, 2018, 8(1): 15016. doi: 10.1038/s41598-018-33382-2
    Liguori MJ, Hoff-Velk JA, Ostrow DH. Recombinant human interleukin-6 enhances the immunoglobulin secretion of a rabbit-rabbit hybridoma[J]. Hybridoma, 2001, 20(3): 189−198. doi: 10.1089/027245701750293529
    Hoogenboom HR. Selecting and screening recombinant antibody libraries[J]. Nat Biotechnol, 2005, 23(9): 1105−1116. doi: 10.1038/nbt1126
    Tomszak F, Weber S, Zantow J, et al. Selection of recombinant human antibodies[J]. Adv Exp Med Biol, 2016, 917: 23−54. doi: 10.1007/978-3-319-32805-8_3
    Sompunga P, Pruksametanan N, Rangnoi K, et al. Generation of human and rabbit recombinant antibodies for the detection of Zearalenone by phage display antibody technology[J]. Talanta, 2019, 201: 397−405. doi: 10.1016/j.talanta.2019.04.034
    Nagano K, Tsutsumi Y. Phage display technology as a powerful platform for antibody drug discovery[J]. Viruses, 2021, 13(2): 178. doi: 10.3390/v13020178
    Zambrano N, Froechlich G, Lazarevic D, et al. High-throughput monoclonal antibody discovery from phage libraries: challenging the current preclinical pipeline to keep the pace with the increasing mAb demand[J]. Cancers (Basel), 2022, 14(5): 1325. doi: 10.3390/cancers14051325
    André AS, Moutinho I, Dias JNR, et al. In vivo phage display: a promising selection strategy for the improvement of antibody targeting and drug delivery properties[J]. Front Microbiol, 2022, 13: 962124. doi: 10.3389/fmicb.2022.962124
    Laustsen AH, Greiff V, Karatt-Vellatt A, et al. Animal immunization, in vitro display technologies, and machine learning for antibody discovery[J]. Trends Biotechnol, 2021, 39(12): 1263−1273. doi: 10.1016/j.tibtech.2021.03.003
    Aguiar SI, Dias JNR, André AS, et al. Highly specific blood-brain barrier transmigrating single-domain antibodies selected by an in vivo phage display screening[J]. Pharmaceutics, 2021, 13(10): 1598. doi: 10.3390/pharmaceutics13101598
    Davies CW, Stowe I, Phung QT, et al. Discovery of a caspase cleavage motif antibody reveals insights into noncanonical inflammasome function[J]. Proc Natl Acad Sci U S A, 2021, 118(12): e2018024118. doi: 10.1073/pnas.2018024118
    Mahdavi SZB, Oroojalian F, Eyvazi S, et al. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages[J]. Int J Biol Macromol, 2022, 208: 421−442. doi: 10.1016/j.ijbiomac.2022.03.113
    Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, et al. Phage display and other peptide display technologies[J]. FEMS Microbiol Rev, 2022, 46(2): fuab052. doi: 10.1093/femsre/fuab052
    Wellner A, McMahon C, Gilman MSA, et al. Rapid generation of potent antibodies by autonomous hypermutation in yeast[J]. Nat Chem Biol, 2021, 17(10): 1057−1064. doi: 10.1038/s41589-021-00832-4
    Li R, Kang G, Hu M, et al. Ribosome display: a potent display technology used for selecting and evolving specific binders with desired properties[J]. Mol Biotechnol, 2019, 61(1): 60−71. doi: 10.1007/s12033-018-0133-0
    Rashidian J, Lloyd J. Single B cell cloning and production of rabbit monoclonal antibodies[J]. Methods Mol Biol, 2020, 2070: 423−441. doi: 10.1007/978-1-4939-9853-1_23
    Pedrioli A, Oxenius A. Single B cell technologies for monoclonal antibody discovery[J]. Trends Immunol, 2021, 42(12): 1143−1158. doi: 10.1016/j.it.2021.10.008
    Lin W, Liang WC, Nguy T, et al. Rapid identification of anti-idiotypic mAbs with high affinity and diverse epitopes by rabbit single B-cell sorting-culture and cloning technology[J]. PLoS One, 2020, 15(12): e0244158. doi: 10.1371/journal.pone.0244158
    Clargo AM, Hudson AR, Ndlovu W, et al. The rapid generation of recombinant functional monoclonal antibodies from individual, antigen-specific bone marrow-derived plasma cells isolated using a novel fluorescence-based method[J]. MAbs, 2014, 6(1): 143−159. doi: 10.4161/mabs.27044
    Seeber S, Ros F, Thorey I, et al. A robust high throughput platform to generate functional recombinant monoclonal antibodies using rabbit B cells from peripheral blood[J]. PLoS One, 2014, 9(2): e86184. doi: 10.1371/journal.pone.0086184
    Kivi G, Teesalu K, Parik J, et al. HybriFree: a robust and rapid method for the development of monoclonal antibodies from different host species[J]. BMC Biotechnol, 2016, 16: 2. doi: 10.1186/s12896-016-0232-6
    Starkie DO, Compson JE, Rapecki S, et al. Generation of recombinant monoclonal antibodies from immunised mice and rabbits via flow cytometry and sorting of antigen-specific IgG+ memory B cells[J]. PLoS One, 2016, 11(3): e0152282. doi: 10.1371/journal.pone.0152282
    Kishi H, Ozawa T, Hamana H, et al. Isolation of antigen-specific, antibody-secreting cells using a chip-based immunospot array[J]. Methods Mol Biol, 2019, 1904: 147−162. doi: 10.1007/978-1-4939-8958-4_6
    Cossarizza A, Chang HD, Radbruch A, et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)[J]. Eur J Immunol, 2019, 49(10): 1457−1973. doi: 10.1002/eji.201970107
    Poitevin Y, Pontini G, Fischer N, et al. Magnetic sorting of membrane associated IgG for phenotype-based selection of stable antibody producing cells[J]. J Immunol Methods, 2017, 444: 1−6. doi: 10.1016/j.jim.2017.02.004
    Berkeleylights. DATASHEET: Opto® Memory B Discovery Rabbit Workflow[EB/OL]. https://www.berkeleylights.com/resources/datasheet-opto-memory-b-discovery-rabbit-workflow/
    Josephides D, Davoli S, Whitley W, et al. Cyto-Mine: an integrated, picodroplet system for high-throughput single-cell analysis, sorting, dispensing, and monoclonality assurance[J]. SLAS Technol, 2020, 25(2): 177−189. doi: 10.1177/2472630319892571
    Singalway Atibody Company. Recombinant Monoclonal and Single-B-Cell Antibody (RmSabTM) Technology [EB/OL]. https://www.sabbiotech.com.cn/topic/Recombinant/Recombinant2.html
    Guo H, Yang Y, Zhao T, et al. Mechanism of a rabbit monoclonal antibody broadly neutralizing SARS-CoV-2 variants[J]. Commun Biol, 2023, 6(1): 364. doi: 10.1038/s42003-023-04759-5
    Ojima-Kato T, Hashimura D, Kojima T, et al. In vitro generation of rabbit anti-Listeria monocytogenes monoclonal antibody using single cell based RT-PCR linked cell-free expression systems[J]. J Immunol Methods, 2015, 427: 58−65. doi: 10.1016/j.jim.2015.10.001
    Wine Y, Boutz DR, Lavinder JJ, et al. Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response[J]. Proc Natl Acad Sci U S A, 2013, 110(8): 2993−2998. doi: 10.1073/pnas.1213737110
    Sila-On D, Chertchinnapa P, Shinkai Y, et al. Development of a dual monoclonal antibody sandwich enzyme-linked immunosorbent assay for the detection of swine influenza virus using rabbit monoclonal antibody by Ecobody technology[J]. J Biosci Bioeng, 2020, 130(2): 217−225. doi: 10.1016/j.jbiosc.2020.03.003
    Mage RG, Esteves PJ, Rader C. Rabbit models of human diseases for diagnostics and therapeutics development[J]. Dev Comp Immunol, 2019, 92: 99−104. doi: 10.1016/j.dci.2018.10.003
    Hong J, Wang Q, Wu Q, et al. Rabbit monoclonal antibody specifically recognizing a linear epitope in the RBD of SARS-CoV-2 spike protein[J]. Vaccines (Basel), 2021, 9(8): 829. doi: 10.3390/vaccines9080829
    Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209−249. doi: 10.3322/caac.21660
    Liu N, Han Z, Lu L, et al. Development of a new rabbit monoclonal antibody and its based competitive indirect enzyme-linked immunosorbent assay for rapid detection of sulfonamides[J]. J Sci Food Agric, 2013, 93(3): 667−673. doi: 10.1002/jsfa.5945
    Onder S, van Grol M, Fidder A, et al. Rabbit antidiethoxyphosphotyrosine antibody, made by single B cell cloning, detects chlorpyrifos oxon-modified proteins in cultured cells and immunopurifies modified peptides for mass spectrometry[J]. J Proteome Res, 2021, 20(10): 4728−4745. doi: 10.1021/acs.jproteome.1c00383
    Miyoshi S, Tokunaga S, Ozawa T, et al. Production of a rabbit monoclonal antibody for highly sensitive detection of citrus mosaic virus and related viruses[J]. PLoS One, 2020, 15(4): e0229196. doi: 10.1371/journal.pone.0229196
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(3)

    Article Metrics

    Article views (346) PDF downloads(38) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint