Volume 6 Issue 2
Dec.  2022
Turn off MathJax
Article Contents
Qingxiao Song, Qinjian Li, Xiaoqi Wang, Xi Zhang. The link between tissue-resident memory T cells and graft-versus-host disease[J]. Blood&Genomics, 2022, 6(2): 81-90. doi: 10.46701/BG.2022022022026
Citation: Qingxiao Song, Qinjian Li, Xiaoqi Wang, Xi Zhang. The link between tissue-resident memory T cells and graft-versus-host disease[J]. Blood&Genomics, 2022, 6(2): 81-90. doi: 10.46701/BG.2022022022026

The link between tissue-resident memory T cells and graft-versus-host disease

doi: 10.46701/BG.2022022022026
More Information
  • Corresponding author: Xi Zhang, Medical Center of Hematology, Xinqiao Hospital; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 83 Xinqiaozheng Street, Shapingba District, Chongqing 400037, China. E-mail: zhangxxi@sina.com
  • Received Date: 2022-10-11
  • Rev Recd Date: 2022-11-16
  • Accepted Date: 2022-11-23
  • Available Online: 2023-07-17
  • Publish Date: 2022-12-30
  • In the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT), this review outlines and analyzes recent developments in the understanding of the properties of tissue-resident memory T cells (TRMs). The paper first discusses commonly recognized TRM characteristics and key TRM phenotypic markers and then covers the master transcription factors controlling TRM generation and maintenance. The TRM distribution in graft-versus-host disease (GVHD)-targeted organs and correlations between allo-HSCT outcomes and various GVHD subtypes were also reviewed, mainly focusing on skin and gut GVHD. This review discusses the organ- and tissue-specific characteristics of donor- and recipient-derived TRMs after allo-HSCT. It also highlights investigations using murine GVHD models, nonhuman primates, and cutting-edge technologies to track clonotypes, establish transcriptome profiles, and identify donor- and recipient-derived TRMs. Furthermore, this review discusses significant results for TRM functions in GVHD patients. Moreover, potential advantages of performing GVHD-focused TRM research with "dirty mice" rather than laboratory mice were proposed. Understanding TRMs in allo-HSCT is a rapidly growing field requiring future studies to address unresolved questions regarding TRM heterogeneity, plasticity, longevity, alloreactivity, and roles in GVHD and tolerance after allo-HSCT.

     

  • loading
  • [1]
    Appelbaum FR. Haematopoietic cell transplantation as immunotherapy[J]. Nature, 2001, 411(6835): 385−389. doi: 10.1038/35077251
    [2]
    Reddy P, Maeda Y, Liu C, et al. A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses[J]. Nat Med, 2005, 11(11): 1244−1249. doi: 10.1038/nm1309
    [3]
    Fefer A. Graft-vs. -tumor responses[M]//Thomas' hematopoietic cell transplantation, New Jersey: Blackwell Publishing Ltd, 2003: 369–379.
    [4]
    Riddell SR. The graft-versus-leukemia effect—breaking the black box open[J]. Biol Blood and Marrow Transplant, 2008, 14(1 Suppl 1): 2−3. doi: 10.1016/j.bbmt.2007.10.004
    [5]
    Shlomchik WD. Graft-versus-host disease[J]. Nat Rev Immunol, 2007, 7(5): 340−352. doi: 10.1038/nri2000
    [6]
    Ito M, Shizuru JA. Graft-vs-lymphoma effect in an allogeneic hematopoietic stem cell transplantation model[J]. Biol Blood Marrow Transplant, 1999, 5(6): 357−368. doi: 10.1016/s1083-8791(99)70012-1
    [7]
    Chakraverty R, Côté D, Buchli J, et al. An inflammatory checkpoint regulates recruitment of graft-versus-host reactive T cells to peripheral tissues[J]. J Exp Med, 2006, 203(8): 2021−2031. doi: 10.1084/jem.20060376
    [8]
    Kong X, Zeng D, Wu X, et al. Tissue-resident PSGL1loCD4+ T cells promote B cell differentiation and chronic graft-versus-host disease-associated autoimmunity[J]. J Clin Invest, 2021, 131(1): e135468. doi: 10.1172/JCI135468
    [9]
    Tkachev V, Kaminski J, Potter EL, et al. Spatiotemporal single-cell profiling reveals that invasive and tissue-resident memory donor CD8+ T cells drive gastrointestinal acute graft-versus-host disease[J]. Sci Transl Med, 2021, 13(576): eabc0227. doi: 10.1126/scitranslmed.abc0227
    [10]
    Masopust D, Soerens AG. Tissue-resident T cells and other resident leukocytes[J]. Annu Rev Immunol, 2019, 37: 521−546. doi: 10.1146/annurev-immunol-042617-053214
    [11]
    Park CO, Kupper TS. The emerging role of resident memory T cells in protective immunity and inflammatory disease[J]. Nat Med, 2015, 21(7): 688−697. doi: 10.1038/nm.3883
    [12]
    Schenkel JM, Masopust D. Tissue-resident memory T cells[J]. Immunity, 2014, 41(6): 886−897. doi: 10.1016/j.immuni.2014.12.007
    [13]
    Zeiser R, Blazar BR. Acute graft-versus-host disease-biologic process, prevention, and therapy[J]. N Engl J Med, 2017, 377(22): 2167−2179. doi: 10.1056/NEJMra1609337
    [14]
    Zeiser R, Blazar BR. Pathophysiology of chronic graft-versus-host disease and therapeutic targets[J]. N Engl J Med, 2017, 377(26): 2565−2579. doi: 10.1056/NEJMra1703472
    [15]
    Strobl J, Pandey RV, Krausgruber T, et al. Long-term skin-resident memory T cells proliferate in situ and are involved in human graft-versus-host disease[J]. Sci Transl Med, 2020, 12(570): eabb7028. doi: 10.1126/scitranslmed.abb7028
    [16]
    Kumar BV, Ma W, Miron M, et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites[J]. Cell Rep, 2017, 20(12): 2921−2934. doi: 10.1016/j.celrep.2017.08.078
    [17]
    Szabo PA, Miron M, Farber DL. Location, location, location: tissue resident memory T cells in mice and humans[J]. Sci Immunol, 2019, 4(34): eaas9673. doi: 10.1126/sciimmunol.aas9673
    [18]
    Thome JJ, Farber DL. Emerging concepts in tissue-resident T cells: lessons from humans[J]. Trends Immunol, 2015, 36(7): 428−435. doi: 10.1016/j.it.2015.05.003
    [19]
    Cibrian D, Sanchez-Madrid F. CD69: from activation marker to metabolic gatekeeper[J]. Eur J Immunol, 2017, 47(6): 946−953. doi: 10.1002/eji.201646837
    [20]
    Mackay LK, Braun A, Macleod BL, et al. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention[J]. J Immunol, 2015, 194(5): 2059−2063. doi: 10.4049/jimmunol.1402256
    [21]
    Zajac AJ, Harrington LE. Tissue-resident T cells lose their S1P1 exit visas[J]. Cell Mol Immunol, 2014, 11(3): 221−223. doi: 10.1038/cmi.2014.7
    [22]
    Hart GT, Hogquist KA, Jameson SC. Krüppel-like factors in lymphocyte biology[J]. J Immunol, 2012, 188(2): 521−526. doi: 10.4049/jimmunol.1101530
    [23]
    Skon CN, Lee JY, Anderson KG, et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells[J]. Nat Immunol, 2013, 14(12): 1285−1293. doi: 10.1038/ni.2745
    [24]
    Steinert EM, Schenkel JM, Fraser KA, et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance[J]. Cell, 2015, 161(4): 737−749. doi: 10.1016/j.cell.2015.03.031
    [25]
    Beura LK, Wijeyesinghe S, Thompson EA, et al. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells[J]. Immunity, 2018, 48(2): 327−338.e5. doi: 10.1016/j.immuni.2018.01.015
    [26]
    Thome JJ, Yudanin N, Ohmura Y, et al. Spatial map of human T cell compartmentalization and maintenance over decades of life[J]. Cell, 2014, 159(4): 814−828. doi: 10.1016/j.cell.2014.10.026
    [27]
    Takamura S, Yagi H, Hakata Y, et al. Specific niches for lung-resident memory CD8+ T cells at the site of tissue regeneration enable CD69-independent maintenance[J]. J Exp Med, 2016, 213(13): 3057−3073. doi: 10.1084/jem.20160938
    [28]
    Gebhardt T, Whitney PG, Zaid A, et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells[J]. Nature, 2011, 477(7363): 216−219. doi: 10.1038/nature10339
    [29]
    Iijima N, Iwasaki A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells[J]. Science, 2014, 346(6205): 93−98. doi: 10.1126/science.1257530
    [30]
    Watanabe R, Gehad A, Yang C, et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells[J]. Sci Transl Med, 2015, 7(279): 279ra239. doi: 10.1126/scitranslmed.3010302
    [31]
    Cepek KL, Shaw SK, Parker CM, et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin[J]. Nature, 1994, 372(6502): 190−193. doi: 10.1038/372190a0
    [32]
    Hombrink P, Helbig C, Backer RA, et al. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells[J]. Nat Immunol, 2016, 17(12): 1467−1478. doi: 10.1038/ni.3589
    [33]
    Sheridan BS, Pham QM, Lee YT, et al. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function[J]. Immunity, 2014, 40(5): 747−757. doi: 10.1016/j.immuni.2014.03.007
    [34]
    Mackay LK, Rahimpour A, Ma JZ, et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin[J]. Nat Immunol, 2013, 14(12): 1294−1301. doi: 10.1038/ni.2744
    [35]
    Casey KA, Fraser KA, Schenkel JM, et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues[J]. J Immunol, 2012, 188(10): 4866−4875. doi: 10.4049/jimmunol.1200402
    [36]
    Djenidi F, Adam J, Goubar A, et al. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients[J]. J Immunol, 2015, 194(7): 3475−3486. doi: 10.4049/jimmunol.1402711
    [37]
    Franciszkiewicz K, Le Floc'h A, Boutet M, et al. CD103 or LFA-1 engagement at the immune synapse between cytotoxic T cells and tumor cells promotes maturation and regulates T-cell effector functions[J]. Cancer Res, 2013, 73(2): 617−628. doi: 10.1158/0008-5472.CAN-12-2569
    [38]
    Le Floc'h A, Jalil A, Vergnon I, et al. Alpha E beta 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis[J]. J Exp Med, 2007, 204(3): 559−570. doi: 10.1084/jem.20061524
    [39]
    Le Floc'h A, Jalil A, Franciszkiewicz K, et al. Minimal engagement of CD103 on cytotoxic T lymphocytes with an E-cadherin-Fc molecule triggers lytic granule polarization via a phospholipase Cgamma-dependent pathway[J]. Cancer Res, 2011, 71(2): 328−338. doi: 10.1158/0008-5472.CAN-10-2457
    [40]
    Corgnac S, Boutet M, Kfoury M, et al. The emerging role of CD8+ tissue resident memory T (TRM) cells in antitumor immunity: a unique functional contribution of the CD103 integrin[J]. Front Immunol, 2018, 9: 1904. doi: 10.3389/fimmu.2018.01904
    [41]
    Schattgen SA, Thomas PG. TRH cells, helpers making an impact in their local community[J]. Sci Immunol, 2021, 6(55): eabf2886. doi: 10.1126/sciimmunol.abf2886
    [42]
    Swarnalekha N, Schreiner D, Litzler LC, et al. T resident helper cells promote humoral responses in the lung[J]. Sci Immunol, 2021, 6(55): eabb6808. doi: 10.1126/sciimmunol.abb6808
    [43]
    Son YM, Cheon IS, Wu Y, et al. Tissue-resident CD4+ T helper cells assist the development of protective respiratory B and CD8+ T cell memory responses[J]. Sci Immunol, 2021, 6(55): eabb6852. doi: 10.1126/sciimmunol.abb6852
    [44]
    Clark AD, Bosselut R. Hic et Runx: new insights into T cell tissue residency[J]. Trends Immunol, 2022, 43(10): 780−781. doi: 10.1016/j.it.2022.08.006
    [45]
    Mackay LK, Wynne-Jones E, Freestone D, et al. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate[J]. Immunity, 2015, 43(6): 1101−1111. doi: 10.1016/j.immuni.2015.11.008
    [46]
    Laidlaw BJ, Zhang N, Marshall HD, et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection[J]. Immunity, 2014, 41(4): 633−645. doi: 10.1016/j.immuni.2014.09.007
    [47]
    Chang JT, Wherry EJ, Goldrath AW. Molecular regulation of effector and memory T cell differentiation[J]. Nat Immunol, 2014, 15(12): 1104−1115. doi: 10.1038/ni.3031
    [48]
    Mackay LK, Minnich M, Kragten NA, et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes[J]. Science, 2016, 352(6284): 459−463. doi: 10.1126/science.aad2035
    [49]
    Boddupalli CS, Nair S, Gray SM, et al. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells[J]. J Clin Invest, 2016, 126(10): 3905−3916. doi: 10.1172/JCI85329
    [50]
    Hirai T, Zenke Y, Yang Y, et al. Keratinocyte-mediated activation of the cytokine TGF-β maintains skin recirculating memory CD8+ T cells[J]. Immunity, 2019, 50(5): 1249−1261.e5. doi: 10.1016/j.immuni.2019.03.002
    [51]
    Zhang N, Bevan MJ. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention[J]. Immunity, 2013, 39(4): 687−696. doi: 10.1016/j.immuni.2013.08.019
    [52]
    Christo SN, Evrard M, Park SL, et al. Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity[J]. Nat Immunol, 2021, 22(9): 1140−1151. doi: 10.1038/s41590-021-01004-1
    [53]
    Milner JJ, Toma C, Yu B, et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours[J]. Nature, 2017, 552(7684): 253−257. doi: 10.1038/nature24993
    [54]
    Hondowicz BD, Kim KS, Ruterbusch MJ, et al. IL-2 is required for the generation of viral-specific CD4+ Th1 tissue-resident memory cells and B cells are essential for maintenance in the lung[J]. Eur J Immunol, 2018, 48(1): 80−86. doi: 10.1002/eji.201746928
    [55]
    Collins N, Jiang X, Zaid A, et al. Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation[J]. Nat Commun, 2016, 7: 11514. doi: 10.1038/ncomms11514
    [56]
    Beura LK, Fares-Frederickson NJ, Steinert EM, et al. CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses[J]. J Exp Med, 2019, 216(5): 1214−1229. doi: 10.1084/jem.20181365
    [57]
    Ariotti S, Beltman JB, Chodaczek G, et al. Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen[J]. Proc Natl Acad Sci U S A, 2012, 109(48): 19739−19744. doi: 10.1073/pnas.1208927109
    [58]
    Fonseca R, Burn TN, Gandolfo LC, et al. Runx3 drives a CD8+ T cell tissue residency program that is absent in CD4+ T cells[J]. Nat Immunol, 2022, 23(8): 1236−1245. doi: 10.1038/s41590-022-01273-4
    [59]
    Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity[J]. Science, 2014, 346(6212): 954−959. doi: 10.1126/science.1260144
    [60]
    Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation[J]. Nat Rev Immunol, 2014, 14(5): 289−301. doi: 10.1038/nri3646
    [61]
    Gaide O, Emerson RO, Jiang X, et al. Common clonal origin of central and resident memory T cells following skin immunization[J]. Nat Med, 2015, 21(6): 647−653. doi: 10.1038/nm.3860
    [62]
    Naik S, Bouladoux N, Linehan JL, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature[J]. Nature, 2015, 520(7545): 104−108. doi: 10.1038/nature14052
    [63]
    Campbell JJ, Haraldsen G, Pan J, et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells[J]. Nature, 1999, 400(6746): 776−780. doi: 10.1038/23495
    [64]
    Schaerli P, Ebert L, Willimann K, et al. A skin-selective homing mechanism for human immune surveillance T cells[J]. J Exp Med, 2004, 199(9): 1265−1275. doi: 10.1084/jem.20032177
    [65]
    Sigmundsdottir H, Pan J, Debes GF, et al. DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27[J]. Nat Immunol, 2007, 8(3): 285−293. doi: 10.1038/ni1433
    [66]
    Clark RA, Chong B, Mirchandani N, et al. The vast majority of CLA+ T cells are resident in normal skin[J]. J Immunol, 2006, 176(7): 4431−4439. doi: 10.4049/jimmunol.176.7.4431
    [67]
    Zaid A, Hor JL, Christo SN, et al. Chemokine receptor-dependent control of skin tissue-resident memory T cell formation[J]. J Immunol, 2017, 199(7): 2451−2459. doi: 10.4049/jimmunol.1700571
    [68]
    Bromley SK, Akbaba H, Mani V, et al. CD49a regulates cutaneous resident memory CD8+ T cell persistence and response[J]. Cell Rep, 2020, 32(9): 108085. doi: 10.1016/j.celrep.2020.108085
    [69]
    Ugur M, Schulz O, Menon MB, et al. Resident CD4+ T cells accumulate in lymphoid organs after prolonged antigen exposure[J]. Nat Commun, 2014, 5: 4821. doi: 10.1038/ncomms5821
    [70]
    Jin H, Ni X, Deng R, et al. Antibodies from donor B cells perpetuate cutaneous chronic graft-versus-host disease in mice[J]. Blood, 2016, 127(18): 2249−2260. doi: 10.1182/blood-2015-09-668145
    [71]
    Gartlan KH, Bommiasamy H, Paz K, et al. A critical role for donor-derived IL-22 in cutaneous chronic GVHD[J]. Am J Transplant, 2018, 18(4): 810−820. doi: 10.1111/ajt.14513
    [72]
    de Almeida GP, Lichtner P, Eckstein G, et al. Human skin-resident host T cells can persist long term after allogeneic stem cell transplantation and maintain recirculation potential[J]. Sci Immunol, 2022, 7(67): eabe2634. doi: 10.1126/sciimmunol.abe2634
    [73]
    Strobl J, Gail LM, Kleissl L, et al. Human resident memory T cells exit the skin and mediate systemic Th2-driven inflammation[J]. J Exp Med, 2021, 218(11): e20210417. doi: 10.1084/jem.20210417
    [74]
    Fonseca R, Beura LK, Quarnstrom CF, et al. Developmental plasticity allows outside-in immune responses by resident memory T cells[J]. Nat Immunol, 2020, 21(4): 412−421. doi: 10.1038/s41590-020-0607-7
    [75]
    Wijeyesinghe S, Beura LK, Pierson MJ, et al. Expansible residence decentralizes immune homeostasis[J]. Nature, 2021, 592(7854): 457−462. doi: 10.1038/s41586-021-03351-3
    [76]
    Kong X, Wu X, Wang B, et al. Trafficking between clonally related peripheral T helper cells and tissue-resident T helper cells in chronic GVHD[J]. Blood, 2022, blood: 2022016581. doi: 10.1182/blood.2022016581
    [77]
    Paap EM, Muller TM, Sommer K, et al. Total recall: intestinal TRM cells in health and disease[J]. Front Immunol, 2020, 11: 623072. doi: 10.3389/fimmu.2020.623072
    [78]
    Johansson-Lindbom B, Svensson M, Pabst O, et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing[J]. J Exp Med, 2005, 202(8): 1063−1073. doi: 10.1084/jem.20051100
    [79]
    He W, Racine JJ, Johnston HF, et al. Depletion of host CCR7+ dendritic cells prevented donor T cell tissue tropism in anti-CD3-conditioned recipients[J]. Biol Blood Marrow Transplant, 2014, 20(7): 920−928. doi: 10.1016/j.bbmt.2014.03.029
    [80]
    Schenkel JM, Fraser KA, Casey KA, et al. IL-15-independent maintenance of tissue-resident and boosted effector memory CD8 T cells[J]. J Immunol, 2016, 196(9): 3920−3926. doi: 10.4049/jimmunol.1502337
    [81]
    Bachem A, Makhlouf C, Binger KJ, et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells[J]. Immunity, 2019, 51(2): 285−297.e5. doi: 10.1016/j.immuni.2019.06.002
    [82]
    Zundler S, Becker E, Spocinska M, et al. Hobit- and Blimp-1-driven CD4+ tissue-resident memory T cells control chronic intestinal inflammation[J]. Nat Immunol, 2019, 20(3): 288−300. doi: 10.1038/s41590-018-0298-5
    [83]
    Isakov D, Dzutsev A, Belyakov IM, et al. Non-equilibrium and differential function between intraepithelial and lamina propria virus-specific TCRalphabeta+ CD8alphabeta+ T cells in the small intestinal mucosa[J]. Mucosal Immunol, 2009, 2(5): 450−461. doi: 10.1038/mi.2009.95
    [84]
    Zeiser R, Nguyen VH, Beilhack A, et al. Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production[J]. Blood, 2006, 108(1): 390−399. doi: 10.1182/blood-2006-01-0329
    [85]
    Piper C, Hainstock E, Yin-Yuan C, et al. Single-cell immune profiling reveals a developmentally distinct CD4+ GM-CSF+ T-cell lineage that induces GI tract GVHD[J]. Blood Adv, 2022, 6(9): 2791−2804. doi: 10.1182/bloodadvances.2021006084
    [86]
    Zeiser R, Socie G, Blazar BR. Pathogenesis of acute graft-versus-host disease: from intestinal microbiota alterations to donor T cell activation[J]. Br J Haematol, 2016, 175(2): 191−207. doi: 10.1111/bjh.14295
    [87]
    Anderson BE, Taylor PA, McNiff JM, et al. Effects of donor T-cell trafficking and priming site on graft-versus-host disease induction by naive and memory phenotype CD4 T cells[J]. Blood, 2008, 111(10): 5242−5251. doi: 10.1182/blood-2007-09-107953
    [88]
    Wysocki CA, Panoskaltsis-Mortari A, Blazar BR, et al. Leukocyte migration and graft-versus-host disease[J]. Blood, 2005, 105(11): 4191−4199. doi: 10.1182/blood-2004-12-4726
    [89]
    Beilhack A, Schulz S, Baker J, et al. In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets[J]. Blood, 2005, 106(3): 1113−1122. doi: 10.1182/blood-2005-02-0509
    [90]
    Guy-Grand D, Vassalli P. Gut injury in mouse graft-versus-host reaction. Study of its occurrence and mechanisms[J]. J Clin Invest, 1986, 77(5): 1584−1595. doi: 10.1172/JCI112474
    [91]
    Takatsuka H, Iwasaki T, Okamoto T, et al. Intestinal graft-versus-host disease: mechanisms and management[J]. Drugs, 2003, 63(1): 1−15. doi: 10.2165/00003495-200363010-00001
    [92]
    Murai M, Yoneyama H, Ezaki T, et al. Peyer's patch is the essential site in initiating murine acute and lethal graft-versus-host reaction[J]. Nat Immunol, 2003, 4(2): 154−160. doi: 10.1038/ni879
    [93]
    Duffner U, Lu B, Hildebrandt GC, et al. Role of CXCR3-induced donor T-cell migration in acute GVHD[J]. Exp Hematol, 2003, 31(10): 897−902. doi: 10.1016/s0301-472x(03)00198-x
    [94]
    El-Asady R, Yuan R, Liu K, et al. TGF-β-dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease[J]. J Exp Med, 2005, 201(10): 1647−1657. doi: 10.1084/jem.20041044
    [95]
    Santos ESP, Cire S, Conlan T, et al. Peripheral tissues reprogram CD8+ T cells for pathogenicity during graft-versus-host disease[J]. JCI Insight, 2018, 3(5): e97011. doi: 10.1172/jci.insight.97011
    [96]
    Romagnani A, Vettore V, Rezzonico-Jost T, et al. TRPM7 kinase activity is essential for T cell colonization and alloreactivity in the gut[J]. Nat Commun, 2017, 8(1): 1917. doi: 10.1038/s41467-017-01960-z
    [97]
    Weiner J, Svetlicky N, Kang J, et al. CD69+ resident memory T cells are associated with graft-versus-host disease in intestinal transplantation[J]. Am J Transplant, 2021, 21(5): 1878−1892. doi: 10.1111/ajt.16405
    [98]
    Farber DL, Yudanin NA, Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis[J]. Nat Rev Immunol, 2014, 14(1): 24−35. doi: 10.1038/nri3567
    [99]
    Beura LK, Hamilton SE, Bi K, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice[J]. Nature, 2016, 532(7600): 512−516. doi: 10.1038/nature17655
    [100]
    Rosshart SP, Vassallo BG, Angeletti D, et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance[J]. Cell, 2017, 171(5): 1015−1028.e13. doi: 10.1016/j.cell.2017.09.016
    [101]
    Chen BJ, Deoliveira D, Cui X, et al. Inability of memory T cells to induce graft-versus-host disease is a result of an abortive alloresponse[J]. Blood, 2007, 109(7): 3115−3123. doi: 10.1182/blood-2006-04-016410
    [102]
    Anderson BE, McNiff J, Yan J, et al. Memory CD4+ T cells do not induce graft-versus-host disease[J]. J Clin Invest, 2003, 112(1): 101−108. doi: 10.1172/JCI17601
    [103]
    Zhang Y, Joe G, Hexner E, et al. Alloreactive memory T cells are responsible for the persistence of graft-versus-host disease[J]. J Immunol, 2005, 174(5): 3051−3058. doi: 10.4049/jimmunol.174.5.3051
    [104]
    Zheng H, Matte-Martone C, Jain D, et al. Central memory CD8+ T cells induce graft-versus-host disease and mediate graft-versus-leukemia[J]. J Immunol, 2009, 182(10): 5938−5948. doi: 10.4049/jimmunol.0802212
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (469) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return