Volume 6 Issue 2
Dec.  2022
Turn off MathJax
Article Contents
Qingxiao Song, Qinjian Li, Xiaoqi Wang, Xi Zhang. The link between tissue-resident memory T cells and graft-versus-host disease[J]. Blood&Genomics, 2022, 6(2): 81-90. doi: 10.46701/BG.2022022022026
Citation: Qingxiao Song, Qinjian Li, Xiaoqi Wang, Xi Zhang. The link between tissue-resident memory T cells and graft-versus-host disease[J]. Blood&Genomics, 2022, 6(2): 81-90. doi: 10.46701/BG.2022022022026

The link between tissue-resident memory T cells and graft-versus-host disease

doi: 10.46701/BG.2022022022026
More Information
  • Corresponding author: Xi Zhang, Medical Center of Hematology, Xinqiao Hospital; State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, 83 Xinqiaozheng Street, Shapingba District, Chongqing 400037, China. E-mail: zhangxxi@sina.com
  • Received Date: 2022-10-11
  • Rev Recd Date: 2022-11-16
  • Accepted Date: 2022-11-23
  • Available Online: 2023-07-17
  • Publish Date: 2022-12-30
  • In the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT), this review outlines and analyzes recent developments in the understanding of the properties of tissue-resident memory T cells (TRMs). The paper first discusses commonly recognized TRM characteristics and key TRM phenotypic markers and then covers the master transcription factors controlling TRM generation and maintenance. The TRM distribution in graft-versus-host disease (GVHD)-targeted organs and correlations between allo-HSCT outcomes and various GVHD subtypes were also reviewed, mainly focusing on skin and gut GVHD. This review discusses the organ- and tissue-specific characteristics of donor- and recipient-derived TRMs after allo-HSCT. It also highlights investigations using murine GVHD models, nonhuman primates, and cutting-edge technologies to track clonotypes, establish transcriptome profiles, and identify donor- and recipient-derived TRMs. Furthermore, this review discusses significant results for TRM functions in GVHD patients. Moreover, potential advantages of performing GVHD-focused TRM research with "dirty mice" rather than laboratory mice were proposed. Understanding TRMs in allo-HSCT is a rapidly growing field requiring future studies to address unresolved questions regarding TRM heterogeneity, plasticity, longevity, alloreactivity, and roles in GVHD and tolerance after allo-HSCT.


  • loading
  • [1]
    Appelbaum FR. Haematopoietic cell transplantation as immunotherapy[J]. Nature, 2001, 411(6835): 385−389. doi: 10.1038/35077251
    Reddy P, Maeda Y, Liu C, et al. A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses[J]. Nat Med, 2005, 11(11): 1244−1249. doi: 10.1038/nm1309
    Fefer A. Graft-vs. -tumor responses[M]//Thomas' hematopoietic cell transplantation, New Jersey: Blackwell Publishing Ltd, 2003: 369–379.
    Riddell SR. The graft-versus-leukemia effect—breaking the black box open[J]. Biol Blood and Marrow Transplant, 2008, 14(1 Suppl 1): 2−3. doi: 10.1016/j.bbmt.2007.10.004
    Shlomchik WD. Graft-versus-host disease[J]. Nat Rev Immunol, 2007, 7(5): 340−352. doi: 10.1038/nri2000
    Ito M, Shizuru JA. Graft-vs-lymphoma effect in an allogeneic hematopoietic stem cell transplantation model[J]. Biol Blood Marrow Transplant, 1999, 5(6): 357−368. doi: 10.1016/s1083-8791(99)70012-1
    Chakraverty R, Côté D, Buchli J, et al. An inflammatory checkpoint regulates recruitment of graft-versus-host reactive T cells to peripheral tissues[J]. J Exp Med, 2006, 203(8): 2021−2031. doi: 10.1084/jem.20060376
    Kong X, Zeng D, Wu X, et al. Tissue-resident PSGL1loCD4+ T cells promote B cell differentiation and chronic graft-versus-host disease-associated autoimmunity[J]. J Clin Invest, 2021, 131(1): e135468. doi: 10.1172/JCI135468
    Tkachev V, Kaminski J, Potter EL, et al. Spatiotemporal single-cell profiling reveals that invasive and tissue-resident memory donor CD8+ T cells drive gastrointestinal acute graft-versus-host disease[J]. Sci Transl Med, 2021, 13(576): eabc0227. doi: 10.1126/scitranslmed.abc0227
    Masopust D, Soerens AG. Tissue-resident T cells and other resident leukocytes[J]. Annu Rev Immunol, 2019, 37: 521−546. doi: 10.1146/annurev-immunol-042617-053214
    Park CO, Kupper TS. The emerging role of resident memory T cells in protective immunity and inflammatory disease[J]. Nat Med, 2015, 21(7): 688−697. doi: 10.1038/nm.3883
    Schenkel JM, Masopust D. Tissue-resident memory T cells[J]. Immunity, 2014, 41(6): 886−897. doi: 10.1016/j.immuni.2014.12.007
    Zeiser R, Blazar BR. Acute graft-versus-host disease-biologic process, prevention, and therapy[J]. N Engl J Med, 2017, 377(22): 2167−2179. doi: 10.1056/NEJMra1609337
    Zeiser R, Blazar BR. Pathophysiology of chronic graft-versus-host disease and therapeutic targets[J]. N Engl J Med, 2017, 377(26): 2565−2579. doi: 10.1056/NEJMra1703472
    Strobl J, Pandey RV, Krausgruber T, et al. Long-term skin-resident memory T cells proliferate in situ and are involved in human graft-versus-host disease[J]. Sci Transl Med, 2020, 12(570): eabb7028. doi: 10.1126/scitranslmed.abb7028
    Kumar BV, Ma W, Miron M, et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites[J]. Cell Rep, 2017, 20(12): 2921−2934. doi: 10.1016/j.celrep.2017.08.078
    Szabo PA, Miron M, Farber DL. Location, location, location: tissue resident memory T cells in mice and humans[J]. Sci Immunol, 2019, 4(34): eaas9673. doi: 10.1126/sciimmunol.aas9673
    Thome JJ, Farber DL. Emerging concepts in tissue-resident T cells: lessons from humans[J]. Trends Immunol, 2015, 36(7): 428−435. doi: 10.1016/j.it.2015.05.003
    Cibrian D, Sanchez-Madrid F. CD69: from activation marker to metabolic gatekeeper[J]. Eur J Immunol, 2017, 47(6): 946−953. doi: 10.1002/eji.201646837
    Mackay LK, Braun A, Macleod BL, et al. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention[J]. J Immunol, 2015, 194(5): 2059−2063. doi: 10.4049/jimmunol.1402256
    Zajac AJ, Harrington LE. Tissue-resident T cells lose their S1P1 exit visas[J]. Cell Mol Immunol, 2014, 11(3): 221−223. doi: 10.1038/cmi.2014.7
    Hart GT, Hogquist KA, Jameson SC. Krüppel-like factors in lymphocyte biology[J]. J Immunol, 2012, 188(2): 521−526. doi: 10.4049/jimmunol.1101530
    Skon CN, Lee JY, Anderson KG, et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells[J]. Nat Immunol, 2013, 14(12): 1285−1293. doi: 10.1038/ni.2745
    Steinert EM, Schenkel JM, Fraser KA, et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance[J]. Cell, 2015, 161(4): 737−749. doi: 10.1016/j.cell.2015.03.031
    Beura LK, Wijeyesinghe S, Thompson EA, et al. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells[J]. Immunity, 2018, 48(2): 327−338.e5. doi: 10.1016/j.immuni.2018.01.015
    Thome JJ, Yudanin N, Ohmura Y, et al. Spatial map of human T cell compartmentalization and maintenance over decades of life[J]. Cell, 2014, 159(4): 814−828. doi: 10.1016/j.cell.2014.10.026
    Takamura S, Yagi H, Hakata Y, et al. Specific niches for lung-resident memory CD8+ T cells at the site of tissue regeneration enable CD69-independent maintenance[J]. J Exp Med, 2016, 213(13): 3057−3073. doi: 10.1084/jem.20160938
    Gebhardt T, Whitney PG, Zaid A, et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells[J]. Nature, 2011, 477(7363): 216−219. doi: 10.1038/nature10339
    Iijima N, Iwasaki A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells[J]. Science, 2014, 346(6205): 93−98. doi: 10.1126/science.1257530
    Watanabe R, Gehad A, Yang C, et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells[J]. Sci Transl Med, 2015, 7(279): 279ra239. doi: 10.1126/scitranslmed.3010302
    Cepek KL, Shaw SK, Parker CM, et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin[J]. Nature, 1994, 372(6502): 190−193. doi: 10.1038/372190a0
    Hombrink P, Helbig C, Backer RA, et al. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells[J]. Nat Immunol, 2016, 17(12): 1467−1478. doi: 10.1038/ni.3589
    Sheridan BS, Pham QM, Lee YT, et al. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function[J]. Immunity, 2014, 40(5): 747−757. doi: 10.1016/j.immuni.2014.03.007
    Mackay LK, Rahimpour A, Ma JZ, et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin[J]. Nat Immunol, 2013, 14(12): 1294−1301. doi: 10.1038/ni.2744
    Casey KA, Fraser KA, Schenkel JM, et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues[J]. J Immunol, 2012, 188(10): 4866−4875. doi: 10.4049/jimmunol.1200402
    Djenidi F, Adam J, Goubar A, et al. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients[J]. J Immunol, 2015, 194(7): 3475−3486. doi: 10.4049/jimmunol.1402711
    Franciszkiewicz K, Le Floc'h A, Boutet M, et al. CD103 or LFA-1 engagement at the immune synapse between cytotoxic T cells and tumor cells promotes maturation and regulates T-cell effector functions[J]. Cancer Res, 2013, 73(2): 617−628. doi: 10.1158/0008-5472.CAN-12-2569
    Le Floc'h A, Jalil A, Vergnon I, et al. Alpha E beta 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis[J]. J Exp Med, 2007, 204(3): 559−570. doi: 10.1084/jem.20061524
    Le Floc'h A, Jalil A, Franciszkiewicz K, et al. Minimal engagement of CD103 on cytotoxic T lymphocytes with an E-cadherin-Fc molecule triggers lytic granule polarization via a phospholipase Cgamma-dependent pathway[J]. Cancer Res, 2011, 71(2): 328−338. doi: 10.1158/0008-5472.CAN-10-2457
    Corgnac S, Boutet M, Kfoury M, et al. The emerging role of CD8+ tissue resident memory T (TRM) cells in antitumor immunity: a unique functional contribution of the CD103 integrin[J]. Front Immunol, 2018, 9: 1904. doi: 10.3389/fimmu.2018.01904
    Schattgen SA, Thomas PG. TRH cells, helpers making an impact in their local community[J]. Sci Immunol, 2021, 6(55): eabf2886. doi: 10.1126/sciimmunol.abf2886
    Swarnalekha N, Schreiner D, Litzler LC, et al. T resident helper cells promote humoral responses in the lung[J]. Sci Immunol, 2021, 6(55): eabb6808. doi: 10.1126/sciimmunol.abb6808
    Son YM, Cheon IS, Wu Y, et al. Tissue-resident CD4+ T helper cells assist the development of protective respiratory B and CD8+ T cell memory responses[J]. Sci Immunol, 2021, 6(55): eabb6852. doi: 10.1126/sciimmunol.abb6852
    Clark AD, Bosselut R. Hic et Runx: new insights into T cell tissue residency[J]. Trends Immunol, 2022, 43(10): 780−781. doi: 10.1016/j.it.2022.08.006
    Mackay LK, Wynne-Jones E, Freestone D, et al. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate[J]. Immunity, 2015, 43(6): 1101−1111. doi: 10.1016/j.immuni.2015.11.008
    Laidlaw BJ, Zhang N, Marshall HD, et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection[J]. Immunity, 2014, 41(4): 633−645. doi: 10.1016/j.immuni.2014.09.007
    Chang JT, Wherry EJ, Goldrath AW. Molecular regulation of effector and memory T cell differentiation[J]. Nat Immunol, 2014, 15(12): 1104−1115. doi: 10.1038/ni.3031
    Mackay LK, Minnich M, Kragten NA, et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes[J]. Science, 2016, 352(6284): 459−463. doi: 10.1126/science.aad2035
    Boddupalli CS, Nair S, Gray SM, et al. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells[J]. J Clin Invest, 2016, 126(10): 3905−3916. doi: 10.1172/JCI85329
    Hirai T, Zenke Y, Yang Y, et al. Keratinocyte-mediated activation of the cytokine TGF-β maintains skin recirculating memory CD8+ T cells[J]. Immunity, 2019, 50(5): 1249−1261.e5. doi: 10.1016/j.immuni.2019.03.002
    Zhang N, Bevan MJ. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention[J]. Immunity, 2013, 39(4): 687−696. doi: 10.1016/j.immuni.2013.08.019
    Christo SN, Evrard M, Park SL, et al. Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity[J]. Nat Immunol, 2021, 22(9): 1140−1151. doi: 10.1038/s41590-021-01004-1
    Milner JJ, Toma C, Yu B, et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours[J]. Nature, 2017, 552(7684): 253−257. doi: 10.1038/nature24993
    Hondowicz BD, Kim KS, Ruterbusch MJ, et al. IL-2 is required for the generation of viral-specific CD4+ Th1 tissue-resident memory cells and B cells are essential for maintenance in the lung[J]. Eur J Immunol, 2018, 48(1): 80−86. doi: 10.1002/eji.201746928
    Collins N, Jiang X, Zaid A, et al. Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation[J]. Nat Commun, 2016, 7: 11514. doi: 10.1038/ncomms11514
    Beura LK, Fares-Frederickson NJ, Steinert EM, et al. CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses[J]. J Exp Med, 2019, 216(5): 1214−1229. doi: 10.1084/jem.20181365
    Ariotti S, Beltman JB, Chodaczek G, et al. Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen[J]. Proc Natl Acad Sci U S A, 2012, 109(48): 19739−19744. doi: 10.1073/pnas.1208927109
    Fonseca R, Burn TN, Gandolfo LC, et al. Runx3 drives a CD8+ T cell tissue residency program that is absent in CD4+ T cells[J]. Nat Immunol, 2022, 23(8): 1236−1245. doi: 10.1038/s41590-022-01273-4
    Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity[J]. Science, 2014, 346(6212): 954−959. doi: 10.1126/science.1260144
    Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation[J]. Nat Rev Immunol, 2014, 14(5): 289−301. doi: 10.1038/nri3646
    Gaide O, Emerson RO, Jiang X, et al. Common clonal origin of central and resident memory T cells following skin immunization[J]. Nat Med, 2015, 21(6): 647−653. doi: 10.1038/nm.3860
    Naik S, Bouladoux N, Linehan JL, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature[J]. Nature, 2015, 520(7545): 104−108. doi: 10.1038/nature14052
    Campbell JJ, Haraldsen G, Pan J, et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells[J]. Nature, 1999, 400(6746): 776−780. doi: 10.1038/23495
    Schaerli P, Ebert L, Willimann K, et al. A skin-selective homing mechanism for human immune surveillance T cells[J]. J Exp Med, 2004, 199(9): 1265−1275. doi: 10.1084/jem.20032177
    Sigmundsdottir H, Pan J, Debes GF, et al. DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27[J]. Nat Immunol, 2007, 8(3): 285−293. doi: 10.1038/ni1433
    Clark RA, Chong B, Mirchandani N, et al. The vast majority of CLA+ T cells are resident in normal skin[J]. J Immunol, 2006, 176(7): 4431−4439. doi: 10.4049/jimmunol.176.7.4431
    Zaid A, Hor JL, Christo SN, et al. Chemokine receptor-dependent control of skin tissue-resident memory T cell formation[J]. J Immunol, 2017, 199(7): 2451−2459. doi: 10.4049/jimmunol.1700571
    Bromley SK, Akbaba H, Mani V, et al. CD49a regulates cutaneous resident memory CD8+ T cell persistence and response[J]. Cell Rep, 2020, 32(9): 108085. doi: 10.1016/j.celrep.2020.108085
    Ugur M, Schulz O, Menon MB, et al. Resident CD4+ T cells accumulate in lymphoid organs after prolonged antigen exposure[J]. Nat Commun, 2014, 5: 4821. doi: 10.1038/ncomms5821
    Jin H, Ni X, Deng R, et al. Antibodies from donor B cells perpetuate cutaneous chronic graft-versus-host disease in mice[J]. Blood, 2016, 127(18): 2249−2260. doi: 10.1182/blood-2015-09-668145
    Gartlan KH, Bommiasamy H, Paz K, et al. A critical role for donor-derived IL-22 in cutaneous chronic GVHD[J]. Am J Transplant, 2018, 18(4): 810−820. doi: 10.1111/ajt.14513
    de Almeida GP, Lichtner P, Eckstein G, et al. Human skin-resident host T cells can persist long term after allogeneic stem cell transplantation and maintain recirculation potential[J]. Sci Immunol, 2022, 7(67): eabe2634. doi: 10.1126/sciimmunol.abe2634
    Strobl J, Gail LM, Kleissl L, et al. Human resident memory T cells exit the skin and mediate systemic Th2-driven inflammation[J]. J Exp Med, 2021, 218(11): e20210417. doi: 10.1084/jem.20210417
    Fonseca R, Beura LK, Quarnstrom CF, et al. Developmental plasticity allows outside-in immune responses by resident memory T cells[J]. Nat Immunol, 2020, 21(4): 412−421. doi: 10.1038/s41590-020-0607-7
    Wijeyesinghe S, Beura LK, Pierson MJ, et al. Expansible residence decentralizes immune homeostasis[J]. Nature, 2021, 592(7854): 457−462. doi: 10.1038/s41586-021-03351-3
    Kong X, Wu X, Wang B, et al. Trafficking between clonally related peripheral T helper cells and tissue-resident T helper cells in chronic GVHD[J]. Blood, 2022, blood: 2022016581. doi: 10.1182/blood.2022016581
    Paap EM, Muller TM, Sommer K, et al. Total recall: intestinal TRM cells in health and disease[J]. Front Immunol, 2020, 11: 623072. doi: 10.3389/fimmu.2020.623072
    Johansson-Lindbom B, Svensson M, Pabst O, et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing[J]. J Exp Med, 2005, 202(8): 1063−1073. doi: 10.1084/jem.20051100
    He W, Racine JJ, Johnston HF, et al. Depletion of host CCR7+ dendritic cells prevented donor T cell tissue tropism in anti-CD3-conditioned recipients[J]. Biol Blood Marrow Transplant, 2014, 20(7): 920−928. doi: 10.1016/j.bbmt.2014.03.029
    Schenkel JM, Fraser KA, Casey KA, et al. IL-15-independent maintenance of tissue-resident and boosted effector memory CD8 T cells[J]. J Immunol, 2016, 196(9): 3920−3926. doi: 10.4049/jimmunol.1502337
    Bachem A, Makhlouf C, Binger KJ, et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells[J]. Immunity, 2019, 51(2): 285−297.e5. doi: 10.1016/j.immuni.2019.06.002
    Zundler S, Becker E, Spocinska M, et al. Hobit- and Blimp-1-driven CD4+ tissue-resident memory T cells control chronic intestinal inflammation[J]. Nat Immunol, 2019, 20(3): 288−300. doi: 10.1038/s41590-018-0298-5
    Isakov D, Dzutsev A, Belyakov IM, et al. Non-equilibrium and differential function between intraepithelial and lamina propria virus-specific TCRalphabeta+ CD8alphabeta+ T cells in the small intestinal mucosa[J]. Mucosal Immunol, 2009, 2(5): 450−461. doi: 10.1038/mi.2009.95
    Zeiser R, Nguyen VH, Beilhack A, et al. Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production[J]. Blood, 2006, 108(1): 390−399. doi: 10.1182/blood-2006-01-0329
    Piper C, Hainstock E, Yin-Yuan C, et al. Single-cell immune profiling reveals a developmentally distinct CD4+ GM-CSF+ T-cell lineage that induces GI tract GVHD[J]. Blood Adv, 2022, 6(9): 2791−2804. doi: 10.1182/bloodadvances.2021006084
    Zeiser R, Socie G, Blazar BR. Pathogenesis of acute graft-versus-host disease: from intestinal microbiota alterations to donor T cell activation[J]. Br J Haematol, 2016, 175(2): 191−207. doi: 10.1111/bjh.14295
    Anderson BE, Taylor PA, McNiff JM, et al. Effects of donor T-cell trafficking and priming site on graft-versus-host disease induction by naive and memory phenotype CD4 T cells[J]. Blood, 2008, 111(10): 5242−5251. doi: 10.1182/blood-2007-09-107953
    Wysocki CA, Panoskaltsis-Mortari A, Blazar BR, et al. Leukocyte migration and graft-versus-host disease[J]. Blood, 2005, 105(11): 4191−4199. doi: 10.1182/blood-2004-12-4726
    Beilhack A, Schulz S, Baker J, et al. In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets[J]. Blood, 2005, 106(3): 1113−1122. doi: 10.1182/blood-2005-02-0509
    Guy-Grand D, Vassalli P. Gut injury in mouse graft-versus-host reaction. Study of its occurrence and mechanisms[J]. J Clin Invest, 1986, 77(5): 1584−1595. doi: 10.1172/JCI112474
    Takatsuka H, Iwasaki T, Okamoto T, et al. Intestinal graft-versus-host disease: mechanisms and management[J]. Drugs, 2003, 63(1): 1−15. doi: 10.2165/00003495-200363010-00001
    Murai M, Yoneyama H, Ezaki T, et al. Peyer's patch is the essential site in initiating murine acute and lethal graft-versus-host reaction[J]. Nat Immunol, 2003, 4(2): 154−160. doi: 10.1038/ni879
    Duffner U, Lu B, Hildebrandt GC, et al. Role of CXCR3-induced donor T-cell migration in acute GVHD[J]. Exp Hematol, 2003, 31(10): 897−902. doi: 10.1016/s0301-472x(03)00198-x
    El-Asady R, Yuan R, Liu K, et al. TGF-β-dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease[J]. J Exp Med, 2005, 201(10): 1647−1657. doi: 10.1084/jem.20041044
    Santos ESP, Cire S, Conlan T, et al. Peripheral tissues reprogram CD8+ T cells for pathogenicity during graft-versus-host disease[J]. JCI Insight, 2018, 3(5): e97011. doi: 10.1172/jci.insight.97011
    Romagnani A, Vettore V, Rezzonico-Jost T, et al. TRPM7 kinase activity is essential for T cell colonization and alloreactivity in the gut[J]. Nat Commun, 2017, 8(1): 1917. doi: 10.1038/s41467-017-01960-z
    Weiner J, Svetlicky N, Kang J, et al. CD69+ resident memory T cells are associated with graft-versus-host disease in intestinal transplantation[J]. Am J Transplant, 2021, 21(5): 1878−1892. doi: 10.1111/ajt.16405
    Farber DL, Yudanin NA, Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis[J]. Nat Rev Immunol, 2014, 14(1): 24−35. doi: 10.1038/nri3567
    Beura LK, Hamilton SE, Bi K, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice[J]. Nature, 2016, 532(7600): 512−516. doi: 10.1038/nature17655
    Rosshart SP, Vassallo BG, Angeletti D, et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance[J]. Cell, 2017, 171(5): 1015−1028.e13. doi: 10.1016/j.cell.2017.09.016
    Chen BJ, Deoliveira D, Cui X, et al. Inability of memory T cells to induce graft-versus-host disease is a result of an abortive alloresponse[J]. Blood, 2007, 109(7): 3115−3123. doi: 10.1182/blood-2006-04-016410
    Anderson BE, McNiff J, Yan J, et al. Memory CD4+ T cells do not induce graft-versus-host disease[J]. J Clin Invest, 2003, 112(1): 101−108. doi: 10.1172/JCI17601
    Zhang Y, Joe G, Hexner E, et al. Alloreactive memory T cells are responsible for the persistence of graft-versus-host disease[J]. J Immunol, 2005, 174(5): 3051−3058. doi: 10.4049/jimmunol.174.5.3051
    Zheng H, Matte-Martone C, Jain D, et al. Central memory CD8+ T cells induce graft-versus-host disease and mediate graft-versus-leukemia[J]. J Immunol, 2009, 182(10): 5938−5948. doi: 10.4049/jimmunol.0802212
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (469) PDF downloads(26) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint