Citation: | Qingxiao Song, Qinjian Li, Xiaoqi Wang, Xi Zhang. The link between tissue-resident memory T cells and graft-versus-host disease[J]. Blood&Genomics, 2022, 6(2): 81-90. doi: 10.46701/BG.2022022022026 |
[1] |
Appelbaum FR. Haematopoietic cell transplantation as immunotherapy[J]. Nature, 2001, 411(6835): 385−389. doi: 10.1038/35077251
|
[2] |
Reddy P, Maeda Y, Liu C, et al. A crucial role for antigen-presenting cells and alloantigen expression in graft-versus-leukemia responses[J]. Nat Med, 2005, 11(11): 1244−1249. doi: 10.1038/nm1309
|
[3] |
Fefer A. Graft-vs. -tumor responses[M]//Thomas' hematopoietic cell transplantation, New Jersey: Blackwell Publishing Ltd, 2003: 369–379.
|
[4] |
Riddell SR. The graft-versus-leukemia effect—breaking the black box open[J]. Biol Blood and Marrow Transplant, 2008, 14(1 Suppl 1): 2−3. doi: 10.1016/j.bbmt.2007.10.004
|
[5] |
Shlomchik WD. Graft-versus-host disease[J]. Nat Rev Immunol, 2007, 7(5): 340−352. doi: 10.1038/nri2000
|
[6] |
Ito M, Shizuru JA. Graft-vs-lymphoma effect in an allogeneic hematopoietic stem cell transplantation model[J]. Biol Blood Marrow Transplant, 1999, 5(6): 357−368. doi: 10.1016/s1083-8791(99)70012-1
|
[7] |
Chakraverty R, Côté D, Buchli J, et al. An inflammatory checkpoint regulates recruitment of graft-versus-host reactive T cells to peripheral tissues[J]. J Exp Med, 2006, 203(8): 2021−2031. doi: 10.1084/jem.20060376
|
[8] |
Kong X, Zeng D, Wu X, et al. Tissue-resident PSGL1loCD4+ T cells promote B cell differentiation and chronic graft-versus-host disease-associated autoimmunity[J]. J Clin Invest, 2021, 131(1): e135468. doi: 10.1172/JCI135468
|
[9] |
Tkachev V, Kaminski J, Potter EL, et al. Spatiotemporal single-cell profiling reveals that invasive and tissue-resident memory donor CD8+ T cells drive gastrointestinal acute graft-versus-host disease[J]. Sci Transl Med, 2021, 13(576): eabc0227. doi: 10.1126/scitranslmed.abc0227
|
[10] |
Masopust D, Soerens AG. Tissue-resident T cells and other resident leukocytes[J]. Annu Rev Immunol, 2019, 37: 521−546. doi: 10.1146/annurev-immunol-042617-053214
|
[11] |
Park CO, Kupper TS. The emerging role of resident memory T cells in protective immunity and inflammatory disease[J]. Nat Med, 2015, 21(7): 688−697. doi: 10.1038/nm.3883
|
[12] |
Schenkel JM, Masopust D. Tissue-resident memory T cells[J]. Immunity, 2014, 41(6): 886−897. doi: 10.1016/j.immuni.2014.12.007
|
[13] |
Zeiser R, Blazar BR. Acute graft-versus-host disease-biologic process, prevention, and therapy[J]. N Engl J Med, 2017, 377(22): 2167−2179. doi: 10.1056/NEJMra1609337
|
[14] |
Zeiser R, Blazar BR. Pathophysiology of chronic graft-versus-host disease and therapeutic targets[J]. N Engl J Med, 2017, 377(26): 2565−2579. doi: 10.1056/NEJMra1703472
|
[15] |
Strobl J, Pandey RV, Krausgruber T, et al. Long-term skin-resident memory T cells proliferate in situ and are involved in human graft-versus-host disease[J]. Sci Transl Med, 2020, 12(570): eabb7028. doi: 10.1126/scitranslmed.abb7028
|
[16] |
Kumar BV, Ma W, Miron M, et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites[J]. Cell Rep, 2017, 20(12): 2921−2934. doi: 10.1016/j.celrep.2017.08.078
|
[17] |
Szabo PA, Miron M, Farber DL. Location, location, location: tissue resident memory T cells in mice and humans[J]. Sci Immunol, 2019, 4(34): eaas9673. doi: 10.1126/sciimmunol.aas9673
|
[18] |
Thome JJ, Farber DL. Emerging concepts in tissue-resident T cells: lessons from humans[J]. Trends Immunol, 2015, 36(7): 428−435. doi: 10.1016/j.it.2015.05.003
|
[19] |
Cibrian D, Sanchez-Madrid F. CD69: from activation marker to metabolic gatekeeper[J]. Eur J Immunol, 2017, 47(6): 946−953. doi: 10.1002/eji.201646837
|
[20] |
Mackay LK, Braun A, Macleod BL, et al. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention[J]. J Immunol, 2015, 194(5): 2059−2063. doi: 10.4049/jimmunol.1402256
|
[21] |
Zajac AJ, Harrington LE. Tissue-resident T cells lose their S1P1 exit visas[J]. Cell Mol Immunol, 2014, 11(3): 221−223. doi: 10.1038/cmi.2014.7
|
[22] |
Hart GT, Hogquist KA, Jameson SC. Krüppel-like factors in lymphocyte biology[J]. J Immunol, 2012, 188(2): 521−526. doi: 10.4049/jimmunol.1101530
|
[23] |
Skon CN, Lee JY, Anderson KG, et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells[J]. Nat Immunol, 2013, 14(12): 1285−1293. doi: 10.1038/ni.2745
|
[24] |
Steinert EM, Schenkel JM, Fraser KA, et al. Quantifying memory CD8 T cells reveals regionalization of immunosurveillance[J]. Cell, 2015, 161(4): 737−749. doi: 10.1016/j.cell.2015.03.031
|
[25] |
Beura LK, Wijeyesinghe S, Thompson EA, et al. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T cells[J]. Immunity, 2018, 48(2): 327−338.e5. doi: 10.1016/j.immuni.2018.01.015
|
[26] |
Thome JJ, Yudanin N, Ohmura Y, et al. Spatial map of human T cell compartmentalization and maintenance over decades of life[J]. Cell, 2014, 159(4): 814−828. doi: 10.1016/j.cell.2014.10.026
|
[27] |
Takamura S, Yagi H, Hakata Y, et al. Specific niches for lung-resident memory CD8+ T cells at the site of tissue regeneration enable CD69-independent maintenance[J]. J Exp Med, 2016, 213(13): 3057−3073. doi: 10.1084/jem.20160938
|
[28] |
Gebhardt T, Whitney PG, Zaid A, et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells[J]. Nature, 2011, 477(7363): 216−219. doi: 10.1038/nature10339
|
[29] |
Iijima N, Iwasaki A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells[J]. Science, 2014, 346(6205): 93−98. doi: 10.1126/science.1257530
|
[30] |
Watanabe R, Gehad A, Yang C, et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells[J]. Sci Transl Med, 2015, 7(279): 279ra239. doi: 10.1126/scitranslmed.3010302
|
[31] |
Cepek KL, Shaw SK, Parker CM, et al. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin[J]. Nature, 1994, 372(6502): 190−193. doi: 10.1038/372190a0
|
[32] |
Hombrink P, Helbig C, Backer RA, et al. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells[J]. Nat Immunol, 2016, 17(12): 1467−1478. doi: 10.1038/ni.3589
|
[33] |
Sheridan BS, Pham QM, Lee YT, et al. Oral infection drives a distinct population of intestinal resident memory CD8+ T cells with enhanced protective function[J]. Immunity, 2014, 40(5): 747−757. doi: 10.1016/j.immuni.2014.03.007
|
[34] |
Mackay LK, Rahimpour A, Ma JZ, et al. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin[J]. Nat Immunol, 2013, 14(12): 1294−1301. doi: 10.1038/ni.2744
|
[35] |
Casey KA, Fraser KA, Schenkel JM, et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues[J]. J Immunol, 2012, 188(10): 4866−4875. doi: 10.4049/jimmunol.1200402
|
[36] |
Djenidi F, Adam J, Goubar A, et al. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients[J]. J Immunol, 2015, 194(7): 3475−3486. doi: 10.4049/jimmunol.1402711
|
[37] |
Franciszkiewicz K, Le Floc'h A, Boutet M, et al. CD103 or LFA-1 engagement at the immune synapse between cytotoxic T cells and tumor cells promotes maturation and regulates T-cell effector functions[J]. Cancer Res, 2013, 73(2): 617−628. doi: 10.1158/0008-5472.CAN-12-2569
|
[38] |
Le Floc'h A, Jalil A, Vergnon I, et al. Alpha E beta 7 integrin interaction with E-cadherin promotes antitumor CTL activity by triggering lytic granule polarization and exocytosis[J]. J Exp Med, 2007, 204(3): 559−570. doi: 10.1084/jem.20061524
|
[39] |
Le Floc'h A, Jalil A, Franciszkiewicz K, et al. Minimal engagement of CD103 on cytotoxic T lymphocytes with an E-cadherin-Fc molecule triggers lytic granule polarization via a phospholipase Cgamma-dependent pathway[J]. Cancer Res, 2011, 71(2): 328−338. doi: 10.1158/0008-5472.CAN-10-2457
|
[40] |
Corgnac S, Boutet M, Kfoury M, et al. The emerging role of CD8+ tissue resident memory T (TRM) cells in antitumor immunity: a unique functional contribution of the CD103 integrin[J]. Front Immunol, 2018, 9: 1904. doi: 10.3389/fimmu.2018.01904
|
[41] |
Schattgen SA, Thomas PG. TRH cells, helpers making an impact in their local community[J]. Sci Immunol, 2021, 6(55): eabf2886. doi: 10.1126/sciimmunol.abf2886
|
[42] |
Swarnalekha N, Schreiner D, Litzler LC, et al. T resident helper cells promote humoral responses in the lung[J]. Sci Immunol, 2021, 6(55): eabb6808. doi: 10.1126/sciimmunol.abb6808
|
[43] |
Son YM, Cheon IS, Wu Y, et al. Tissue-resident CD4+ T helper cells assist the development of protective respiratory B and CD8+ T cell memory responses[J]. Sci Immunol, 2021, 6(55): eabb6852. doi: 10.1126/sciimmunol.abb6852
|
[44] |
Clark AD, Bosselut R. Hic et Runx: new insights into T cell tissue residency[J]. Trends Immunol, 2022, 43(10): 780−781. doi: 10.1016/j.it.2022.08.006
|
[45] |
Mackay LK, Wynne-Jones E, Freestone D, et al. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate[J]. Immunity, 2015, 43(6): 1101−1111. doi: 10.1016/j.immuni.2015.11.008
|
[46] |
Laidlaw BJ, Zhang N, Marshall HD, et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection[J]. Immunity, 2014, 41(4): 633−645. doi: 10.1016/j.immuni.2014.09.007
|
[47] |
Chang JT, Wherry EJ, Goldrath AW. Molecular regulation of effector and memory T cell differentiation[J]. Nat Immunol, 2014, 15(12): 1104−1115. doi: 10.1038/ni.3031
|
[48] |
Mackay LK, Minnich M, Kragten NA, et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes[J]. Science, 2016, 352(6284): 459−463. doi: 10.1126/science.aad2035
|
[49] |
Boddupalli CS, Nair S, Gray SM, et al. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells[J]. J Clin Invest, 2016, 126(10): 3905−3916. doi: 10.1172/JCI85329
|
[50] |
Hirai T, Zenke Y, Yang Y, et al. Keratinocyte-mediated activation of the cytokine TGF-β maintains skin recirculating memory CD8+ T cells[J]. Immunity, 2019, 50(5): 1249−1261.e5. doi: 10.1016/j.immuni.2019.03.002
|
[51] |
Zhang N, Bevan MJ. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention[J]. Immunity, 2013, 39(4): 687−696. doi: 10.1016/j.immuni.2013.08.019
|
[52] |
Christo SN, Evrard M, Park SL, et al. Discrete tissue microenvironments instruct diversity in resident memory T cell function and plasticity[J]. Nat Immunol, 2021, 22(9): 1140−1151. doi: 10.1038/s41590-021-01004-1
|
[53] |
Milner JJ, Toma C, Yu B, et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours[J]. Nature, 2017, 552(7684): 253−257. doi: 10.1038/nature24993
|
[54] |
Hondowicz BD, Kim KS, Ruterbusch MJ, et al. IL-2 is required for the generation of viral-specific CD4+ Th1 tissue-resident memory cells and B cells are essential for maintenance in the lung[J]. Eur J Immunol, 2018, 48(1): 80−86. doi: 10.1002/eji.201746928
|
[55] |
Collins N, Jiang X, Zaid A, et al. Skin CD4+ memory T cells exhibit combined cluster-mediated retention and equilibration with the circulation[J]. Nat Commun, 2016, 7: 11514. doi: 10.1038/ncomms11514
|
[56] |
Beura LK, Fares-Frederickson NJ, Steinert EM, et al. CD4+ resident memory T cells dominate immunosurveillance and orchestrate local recall responses[J]. J Exp Med, 2019, 216(5): 1214−1229. doi: 10.1084/jem.20181365
|
[57] |
Ariotti S, Beltman JB, Chodaczek G, et al. Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen[J]. Proc Natl Acad Sci U S A, 2012, 109(48): 19739−19744. doi: 10.1073/pnas.1208927109
|
[58] |
Fonseca R, Burn TN, Gandolfo LC, et al. Runx3 drives a CD8+ T cell tissue residency program that is absent in CD4+ T cells[J]. Nat Immunol, 2022, 23(8): 1236−1245. doi: 10.1038/s41590-022-01273-4
|
[59] |
Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity[J]. Science, 2014, 346(6212): 954−959. doi: 10.1126/science.1260144
|
[60] |
Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation[J]. Nat Rev Immunol, 2014, 14(5): 289−301. doi: 10.1038/nri3646
|
[61] |
Gaide O, Emerson RO, Jiang X, et al. Common clonal origin of central and resident memory T cells following skin immunization[J]. Nat Med, 2015, 21(6): 647−653. doi: 10.1038/nm.3860
|
[62] |
Naik S, Bouladoux N, Linehan JL, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature[J]. Nature, 2015, 520(7545): 104−108. doi: 10.1038/nature14052
|
[63] |
Campbell JJ, Haraldsen G, Pan J, et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells[J]. Nature, 1999, 400(6746): 776−780. doi: 10.1038/23495
|
[64] |
Schaerli P, Ebert L, Willimann K, et al. A skin-selective homing mechanism for human immune surveillance T cells[J]. J Exp Med, 2004, 199(9): 1265−1275. doi: 10.1084/jem.20032177
|
[65] |
Sigmundsdottir H, Pan J, Debes GF, et al. DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27[J]. Nat Immunol, 2007, 8(3): 285−293. doi: 10.1038/ni1433
|
[66] |
Clark RA, Chong B, Mirchandani N, et al. The vast majority of CLA+ T cells are resident in normal skin[J]. J Immunol, 2006, 176(7): 4431−4439. doi: 10.4049/jimmunol.176.7.4431
|
[67] |
Zaid A, Hor JL, Christo SN, et al. Chemokine receptor-dependent control of skin tissue-resident memory T cell formation[J]. J Immunol, 2017, 199(7): 2451−2459. doi: 10.4049/jimmunol.1700571
|
[68] |
Bromley SK, Akbaba H, Mani V, et al. CD49a regulates cutaneous resident memory CD8+ T cell persistence and response[J]. Cell Rep, 2020, 32(9): 108085. doi: 10.1016/j.celrep.2020.108085
|
[69] |
Ugur M, Schulz O, Menon MB, et al. Resident CD4+ T cells accumulate in lymphoid organs after prolonged antigen exposure[J]. Nat Commun, 2014, 5: 4821. doi: 10.1038/ncomms5821
|
[70] |
Jin H, Ni X, Deng R, et al. Antibodies from donor B cells perpetuate cutaneous chronic graft-versus-host disease in mice[J]. Blood, 2016, 127(18): 2249−2260. doi: 10.1182/blood-2015-09-668145
|
[71] |
Gartlan KH, Bommiasamy H, Paz K, et al. A critical role for donor-derived IL-22 in cutaneous chronic GVHD[J]. Am J Transplant, 2018, 18(4): 810−820. doi: 10.1111/ajt.14513
|
[72] |
de Almeida GP, Lichtner P, Eckstein G, et al. Human skin-resident host T cells can persist long term after allogeneic stem cell transplantation and maintain recirculation potential[J]. Sci Immunol, 2022, 7(67): eabe2634. doi: 10.1126/sciimmunol.abe2634
|
[73] |
Strobl J, Gail LM, Kleissl L, et al. Human resident memory T cells exit the skin and mediate systemic Th2-driven inflammation[J]. J Exp Med, 2021, 218(11): e20210417. doi: 10.1084/jem.20210417
|
[74] |
Fonseca R, Beura LK, Quarnstrom CF, et al. Developmental plasticity allows outside-in immune responses by resident memory T cells[J]. Nat Immunol, 2020, 21(4): 412−421. doi: 10.1038/s41590-020-0607-7
|
[75] |
Wijeyesinghe S, Beura LK, Pierson MJ, et al. Expansible residence decentralizes immune homeostasis[J]. Nature, 2021, 592(7854): 457−462. doi: 10.1038/s41586-021-03351-3
|
[76] |
Kong X, Wu X, Wang B, et al. Trafficking between clonally related peripheral T helper cells and tissue-resident T helper cells in chronic GVHD[J]. Blood, 2022, blood: 2022016581. doi: 10.1182/blood.2022016581
|
[77] |
Paap EM, Muller TM, Sommer K, et al. Total recall: intestinal TRM cells in health and disease[J]. Front Immunol, 2020, 11: 623072. doi: 10.3389/fimmu.2020.623072
|
[78] |
Johansson-Lindbom B, Svensson M, Pabst O, et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing[J]. J Exp Med, 2005, 202(8): 1063−1073. doi: 10.1084/jem.20051100
|
[79] |
He W, Racine JJ, Johnston HF, et al. Depletion of host CCR7+ dendritic cells prevented donor T cell tissue tropism in anti-CD3-conditioned recipients[J]. Biol Blood Marrow Transplant, 2014, 20(7): 920−928. doi: 10.1016/j.bbmt.2014.03.029
|
[80] |
Schenkel JM, Fraser KA, Casey KA, et al. IL-15-independent maintenance of tissue-resident and boosted effector memory CD8 T cells[J]. J Immunol, 2016, 196(9): 3920−3926. doi: 10.4049/jimmunol.1502337
|
[81] |
Bachem A, Makhlouf C, Binger KJ, et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells[J]. Immunity, 2019, 51(2): 285−297.e5. doi: 10.1016/j.immuni.2019.06.002
|
[82] |
Zundler S, Becker E, Spocinska M, et al. Hobit- and Blimp-1-driven CD4+ tissue-resident memory T cells control chronic intestinal inflammation[J]. Nat Immunol, 2019, 20(3): 288−300. doi: 10.1038/s41590-018-0298-5
|
[83] |
Isakov D, Dzutsev A, Belyakov IM, et al. Non-equilibrium and differential function between intraepithelial and lamina propria virus-specific TCRalphabeta+ CD8alphabeta+ T cells in the small intestinal mucosa[J]. Mucosal Immunol, 2009, 2(5): 450−461. doi: 10.1038/mi.2009.95
|
[84] |
Zeiser R, Nguyen VH, Beilhack A, et al. Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production[J]. Blood, 2006, 108(1): 390−399. doi: 10.1182/blood-2006-01-0329
|
[85] |
Piper C, Hainstock E, Yin-Yuan C, et al. Single-cell immune profiling reveals a developmentally distinct CD4+ GM-CSF+ T-cell lineage that induces GI tract GVHD[J]. Blood Adv, 2022, 6(9): 2791−2804. doi: 10.1182/bloodadvances.2021006084
|
[86] |
Zeiser R, Socie G, Blazar BR. Pathogenesis of acute graft-versus-host disease: from intestinal microbiota alterations to donor T cell activation[J]. Br J Haematol, 2016, 175(2): 191−207. doi: 10.1111/bjh.14295
|
[87] |
Anderson BE, Taylor PA, McNiff JM, et al. Effects of donor T-cell trafficking and priming site on graft-versus-host disease induction by naive and memory phenotype CD4 T cells[J]. Blood, 2008, 111(10): 5242−5251. doi: 10.1182/blood-2007-09-107953
|
[88] |
Wysocki CA, Panoskaltsis-Mortari A, Blazar BR, et al. Leukocyte migration and graft-versus-host disease[J]. Blood, 2005, 105(11): 4191−4199. doi: 10.1182/blood-2004-12-4726
|
[89] |
Beilhack A, Schulz S, Baker J, et al. In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets[J]. Blood, 2005, 106(3): 1113−1122. doi: 10.1182/blood-2005-02-0509
|
[90] |
Guy-Grand D, Vassalli P. Gut injury in mouse graft-versus-host reaction. Study of its occurrence and mechanisms[J]. J Clin Invest, 1986, 77(5): 1584−1595. doi: 10.1172/JCI112474
|
[91] |
Takatsuka H, Iwasaki T, Okamoto T, et al. Intestinal graft-versus-host disease: mechanisms and management[J]. Drugs, 2003, 63(1): 1−15. doi: 10.2165/00003495-200363010-00001
|
[92] |
Murai M, Yoneyama H, Ezaki T, et al. Peyer's patch is the essential site in initiating murine acute and lethal graft-versus-host reaction[J]. Nat Immunol, 2003, 4(2): 154−160. doi: 10.1038/ni879
|
[93] |
Duffner U, Lu B, Hildebrandt GC, et al. Role of CXCR3-induced donor T-cell migration in acute GVHD[J]. Exp Hematol, 2003, 31(10): 897−902. doi: 10.1016/s0301-472x(03)00198-x
|
[94] |
El-Asady R, Yuan R, Liu K, et al. TGF-β-dependent CD103 expression by CD8+ T cells promotes selective destruction of the host intestinal epithelium during graft-versus-host disease[J]. J Exp Med, 2005, 201(10): 1647−1657. doi: 10.1084/jem.20041044
|
[95] |
Santos ESP, Cire S, Conlan T, et al. Peripheral tissues reprogram CD8+ T cells for pathogenicity during graft-versus-host disease[J]. JCI Insight, 2018, 3(5): e97011. doi: 10.1172/jci.insight.97011
|
[96] |
Romagnani A, Vettore V, Rezzonico-Jost T, et al. TRPM7 kinase activity is essential for T cell colonization and alloreactivity in the gut[J]. Nat Commun, 2017, 8(1): 1917. doi: 10.1038/s41467-017-01960-z
|
[97] |
Weiner J, Svetlicky N, Kang J, et al. CD69+ resident memory T cells are associated with graft-versus-host disease in intestinal transplantation[J]. Am J Transplant, 2021, 21(5): 1878−1892. doi: 10.1111/ajt.16405
|
[98] |
Farber DL, Yudanin NA, Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis[J]. Nat Rev Immunol, 2014, 14(1): 24−35. doi: 10.1038/nri3567
|
[99] |
Beura LK, Hamilton SE, Bi K, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice[J]. Nature, 2016, 532(7600): 512−516. doi: 10.1038/nature17655
|
[100] |
Rosshart SP, Vassallo BG, Angeletti D, et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance[J]. Cell, 2017, 171(5): 1015−1028.e13. doi: 10.1016/j.cell.2017.09.016
|
[101] |
Chen BJ, Deoliveira D, Cui X, et al. Inability of memory T cells to induce graft-versus-host disease is a result of an abortive alloresponse[J]. Blood, 2007, 109(7): 3115−3123. doi: 10.1182/blood-2006-04-016410
|
[102] |
Anderson BE, McNiff J, Yan J, et al. Memory CD4+ T cells do not induce graft-versus-host disease[J]. J Clin Invest, 2003, 112(1): 101−108. doi: 10.1172/JCI17601
|
[103] |
Zhang Y, Joe G, Hexner E, et al. Alloreactive memory T cells are responsible for the persistence of graft-versus-host disease[J]. J Immunol, 2005, 174(5): 3051−3058. doi: 10.4049/jimmunol.174.5.3051
|
[104] |
Zheng H, Matte-Martone C, Jain D, et al. Central memory CD8+ T cells induce graft-versus-host disease and mediate graft-versus-leukemia[J]. J Immunol, 2009, 182(10): 5938−5948. doi: 10.4049/jimmunol.0802212
|