Volume 6 Issue 1
Jun.  2022
Turn off MathJax
Article Contents
Zhenzhen Li, Qunxing An, Jinmei Xu, Jiajia Xin, Yaozhen Chen, Ning An, Shunli Gu, Jing Yi, Wen Yin. Platelets inhibit the proliferation of Staphylococcus epidermidis by directly down-regulating G6PD[J]. Blood&Genomics, 2022, 6(1): 28-35. doi: 10.46701/BG.2022012021131
Citation: Zhenzhen Li, Qunxing An, Jinmei Xu, Jiajia Xin, Yaozhen Chen, Ning An, Shunli Gu, Jing Yi, Wen Yin. Platelets inhibit the proliferation of Staphylococcus epidermidis by directly down-regulating G6PD[J]. Blood&Genomics, 2022, 6(1): 28-35. doi: 10.46701/BG.2022012021131

Platelets inhibit the proliferation of Staphylococcus epidermidis by directly down-regulating G6PD

doi: 10.46701/BG.2022012021131
More Information
  • Corresponding author: Jing Yi, Department of Transfusion Medicine, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China. E-mail: yeluo@fmmu.edu.cn; Wen Yin, Department of Transfusion Medicine, Xijing Hospital, the Fourth Military Medical University, 127 Changle West Road, Xi'an, Shaanxi 710032, China. E-mail: yinwen@fmmu.edu.cn
  • Received Date: 2021-11-13
  • Accepted Date: 2022-03-23
  • Rev Recd Date: 2022-03-17
  • Available Online: 2022-06-30
  • Publish Date: 2022-06-30
  • Beyond their seminal role in hemostasis and thrombosis, platelets (PLTs) are now acknowledged as having multiple roles in the host's defense against infection. PLTs are proven to exert antimicrobial functions in vitro, ex vivo, and in vivo. However, different species of bacteria interact with PLTs differentially. Data concerning the interaction between PLTs and Staphylococcus epidermidis (S. epidermidis), the major prevalent species of nosocomial pathogens, and their related mechanisms are limited. In this study, the direct effects of PLTs on the metabolism and proliferation of S. epidermidis were evaluated. The PLTs from peripheral blood were purified and washed. The PLTs were found to significantly inhibit the proliferation of S. epidermidis when they were cocultured in vitro. Moreover, qRT-PCR showed that the expression of G6PD of the bacteria, a key enzyme in the pentose phosphate pathway, had been down-regulated signally. When the products (GDL, IMP) of the phosphate pentose pathway (PPP) were added to the culture, the antibacterial effect of PLTs was alleviated. This study suggests that PLTs can directly inhibit the proliferation of S. epidermidis and regulate their glucose metabolism, which may play an important role in their direct antimicrobial functions.


  • These authors contributed equally to this work.
  • loading
  • [1]
    Tande AJ, Osmon DR, Greenwood-Quaintance KE, et al. Clinical characteristics and outcomes of prosthetic joint infection caused by small colony variant staphylococci[J]. mBio, 2014, 5(5): e01910−14. doi: 10.1128/mBio.01910-14
    Argemi X, Hansmann Y, Prola K, et al. Coagulase-negative staphylococci pathogenomics[J]. Int J Mol Sci, 2019, 20(5): 1215. doi: 10.3390/ijms20051215
    Lamagni T. Epidemiology and burden of prosthetic joint infections[J]. J Antimicrob Chemother, 2014, 69(suppl_1): i5−i10. doi: 10.1093/jac/dku247
    Li Z, Xiao Z, Li Z, et al. 116 cases of neonatal early-onset or late-onset sepsis: a single center retrospective analysis on pathogenic bacteria species distribution and antimicrobial susceptibility[J]. Int J Clin Exp Med, 2013, 6(8): 693–699.
    Franceschi AT, da Cunha ML. Adverse events related to the use of central venous catheters in hospitalized newborns[J]. Rev Lat Am Enfermagem, 2010, 18(2): 196−202. doi: 10.1590/s0104-11692010000200009
    Hira V, Sluijter M, Estevao S, et al. Clinical and molecular epidemiologic characteristics of coagulase-negative staphylococcal bloodstream infections in intensive care neonates[J]. Pediatr Infect Dis J, 2007, 26(7): 607−612. doi: 10.1097/INF.0b013e318060cc03
    Hischebeth GT, Randau TM, Ploeger MM, et al. Staphylococcus aureus versus Staphylococcus epidermidis in periprosthetic joint infection-Outcome analysis of methicillin-resistant versus methicillin-susceptible strains[J]. Diagn Microbiol Infect Dis, 2019, 93(2): 125−130. doi: 10.1016/j.diagmicrobio.2018.08.012
    Klingenberg C, Ronnestad A, Anderson AS, et al. Persistent strains of coagulase-negative staphylococci in a neonatal intensive care unit: virulence factors and invasiveness[J]. Clin Microbiol Infect, 2007, 13(11): 1100−1111. doi: 10.1111/j.1469-0691.2007.01818.x
    Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates[J]. Blood Rev, 2009, 23(4): 177−189. doi: 10.1016/j.blre.2009.04.001
    Gordon RJ, Miragaia M, Weinberg AD, et al. Staphylococcus epidermidis colonization is highly clonal across US cardiac centers[J]. J Infect Dis, 2012, 205(9): 1391−1398. doi: 10.1093/infdis/jis218
    Raad I, Alrahwan A, Rolston K. Staphylococcus epidermidis: emerging resistance and need for alternative agents[J]. Clin Infect Dis, 1998, 26(5): 1182−1187. doi: 10.1086/520285
    Bispo PJ, Hofling-Lima AL, Pignatari AC. Characterization of ocular methicillin-resistant Staphylococcus epidermidis isolates belonging predominantly to clonal complex 2 subcluster Ⅱ[J]. J Clin Microbiol, 2014, 52(5): 1412−1417. doi: 10.1128/JCM.03098-13
    Versteeg HH, Heemskerk JW, Levi M, et al. New fundamentals in hemostasis[J]. Physiol Rev, 2013, 93(1): 327−358. doi: 10.1152/physrev.00016.2011
    Kaufman RM, Djulbegovic B, Gernsheimer T, et al. Platelet transfusion: a clinical practice guideline from the AABB[J]. Ann Intern Med, 2015, 162(3): 205−213. doi: 10.7326/M14-1589
    Estcourt LJ, Birchall J, Allard S, et al. Guidelines for the use of platelet transfusions[J]. Br J Haematol, 2017, 176(3): 365−394. doi: 10.1111/bjh.14423
    Yeaman MR. Platelets: at the nexus of antimicrobial defence[J]. Nat Rev Microbiol, 2014, 12(6): 426−437. doi: 10.1038/nrmicro3269
    Moutinho B, Pinto B, Cardoso R, et al. Platelets structure, function and modulator capacity in replacement therapy[J]. Cardiovasc Hematol Disord Drug Targets, 2017, 17(3): 180−184. doi: 10.2174/1871529X18666171227152937
    Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood[J]. Nat Med, 2007, 13(4): 463−469. doi: 10.1038/nm1565
    Cognasse F, Nguyen KA, Damien P, et al. The inflammatory role of platelets via their TLRs and siglec receptors[J]. Front Immunol, 2015, 6: 83. doi: 10.3389/fimmu.2015.00083
    Yount NY, Yeaman MR. Multidimensional signatures in antimicrobial peptides[J]. Proc Natl Acad Sci U S A, 2004, 101(19): 7363−7368. doi: 10.1073/pnas.0401567101
    Durr M, Peschel A. Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense[J]. Infect Immun, 2002, 70(12): 6515−6517. doi: 10.1128/IAI.70.12.6515-6517.2002
    Tang YQ, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets[J]. Infect Immun, 2002, 70(12): 6524−6533. doi: 10.1128/IAI.70.12.6524-6533.2002
    Zhang G, Han J, Welch EJ, et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway[J]. J Immunol, 2009, 182(12): 7997−8004. doi: 10.4049/jimmunol.0802884
    Abdulrehman AY, Jackson EC, McNicol A. Platelet activation by Streptococcus sanguinis is accompanied by MAP kinase phosphorylation[J]. Platelets, 2013, 24(1): 6−14. doi: 10.3109/09537104.2012.661105
    Sullam PM, Frank U, Yeaman MR, et al. Effect of thrombocytopenia on the early course of streptococcal endocarditis[J]. J Infect Dis, 1993, 168(4): 910−914. doi: 10.1093/infdis/168.4.910
    Sun H, Wang X, Degen JL, et al. Reduced thrombin generation increases host susceptibility to group A streptococcal infection[J]. Blood, 2009, 113(6): 1358−1364. doi: 10.1182/blood-2008-07-170506
    Semple JW, Freedman J. Platelets and innate immunity[J]. Cell Mol Life Sci, 2010, 67(4): 499−511. doi: 10.1007/s00018-009-0205-1
    Katz JN, Kolappa KP, Becker RC. Beyond thrombosis: the versatile platelet in critical illness[J]. Chest, 2011, 139(3): 658−668. doi: 10.1378/chest.10-1971
    Yeaman MR, Yount NY. Unifying themes in host defence effector polypeptides[J]. Nat Rev Microbiol, 2007, 5(9): 727−740. doi: 10.1038/nrmicro1744
    Maghsoudi O, Ranjbar R, Mirjalili SH, et al. Inhibitory activities of platelet-rich and platelet-poor plasma on the growth of pathogenic bacteria[J]. Iran J Pathol, 2017, 12(1): 79−87. doi: 10.30699/ijp.2017.23386
    Hong H, Xiao W, Lazarus HM, et al. Detection of septic transfusion reactions to platelet transfusions by active and passive surveillance[J]. Blood, 2016, 127(4): 496−502. doi: 10.1182/blood-2015-07-655944
    Jianjun W, Guiqiu S, Maohong B, et al. Guideline for the collection and preparation of non-transfusion autologous platelet concentrate or platelet-rich plasma from patients in hospitals[J]. Blood Genomics, 2021, 5(2): 73−82. doi: 10.46701/BG.2021022021128
    Wong CH, Jenne CN, Petri B, et al. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance[J]. Nat Immunol, 2013, 14(8): 785−792. doi: 10.1038/ni.2631
    Iannacone M, Sitia G, Isogawa M, et al. Platelets mediate cytotoxic T lymphocyte-induced liver damage[J]. Nat Med, 2005, 11(11): 1167−1169. doi: 10.1038/nm1317
    Elzey BD, Sprague DL, Ratliff TL. The emerging role of platelets in adaptive immunity[J]. Cell Immunol, 2005, 238(1): 1−9. doi: 10.1016/j.cellimm.2005.12.005
    Clawson CC, White JG. Platelet interaction with bacteria. I. Reaction phases and effects of inhibitors[J]. Am J Pathol, 1971, 65(2): 367–380.
    Kessler CM, Nussbaum E, Tuazon CU. In vitro correlation of platelet aggregation with occurrence of disseminated intravascular coagulation and subacute bacterial endocarditis[J]. J Lab Clin Med, 1987, 109(6): 647–652.
    Bayer AS, Ramos MD, Menzies BE, et al. Hyperproduction of alpha-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis: a host defense role for platelet microbicidal proteins[J]. Infect Immun, 1997, 65(11): 4652−4660. doi: 10.1128/iai.65.11.4652-4660.1997
    Mohan KV, Rao SS, Gao Y, et al. Enhanced antimicrobial activity of peptide-cocktails against common bacterial contaminants of ex vivo stored platelets[J]. Clin Microbiol Infect, 2014, 20(1): O39−O46. doi: 10.1111/1469-0691.12326
    Ivanov IB, Gritsenko VA. Comparative activities of cattle and swine platelet microbicidal proteins[J]. Probiotics Antimicrob Proteins, 2009, 1(2): 148. doi: 10.1007/s12602-009-9016-9
    Mohan KV, Rao SS, Atreya CD. Evaluation of antimicrobial peptides as novel bactericidal agents for room temperature-stored platelets[J]. Transfusion, 2010, 50(1): 166−173. doi: 10.1111/j.1537-2995.2009.02376.x
    Khardori N, Yassien M, Wilson K. Tolerance of Staphylococcus epidermidis grown from indwelling vascular catheters to antimicrobial agents[J]. J Ind Microbiol, 1995, 15(3): 148−151. doi: 10.1007/BF01569818
    Otto M. Staphylococcus epidermidis-the 'accidental' pathogen[J]. Nat Rev Microbiol, 2009, 7(8): 555−567. doi: 10.1038/nrmicro2182
    Rupp ME, Ulphani JS, Fey PD, et al. Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model[J]. Infect Immun, 1999, 67(5): 2627−2632. doi: 10.1128/IAI.67.5.2627-2632.1999
    Vuong C, Voyich JM, Fischer ER, et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system[J]. Cell Microbiol, 2004, 6(3): 269−275. doi: 10.1046/j.1462-5822.2004.00367.x
    Kristian SA, Birkenstock TA, Sauder U, et al. Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing[J]. J Infect Dis, 2008, 197(7): 1028−1035. doi: 10.1086/528992
    Benjamin RJ, Dy B, Perez J, et al. Bacterial culture of apheresis platelets: a mathematical model of the residual rate of contamination based on unconfirmed positive results[J]. Vox Sang, 2014, 106(1): 23−30. doi: 10.1111/vox.12065
    Kou YT, Pagotto F, Hannach B, et al. Fatal false-negative transfusion infection involving a buffy coat platelet pool contaminated with biofilm-positive Staphylococcus epidermidis: a case report[J]. Transfusion, 2015, 55(10): 2384−2389. doi: 10.1111/trf.13154
    Kerrigan SW, Clarke N, Loughman A, et al. Molecular basis for Staphylococcus aureus-mediated platelet aggregate formation under arterial shear in vitro[J]. Arterioscl Throm Vas Biol, 2008, 28(2): 335−340. doi: 10.1161/ATVBAHA.107.152058
    Xu J, Yi J, Zhang H, et al. Platelets directly regulate DNA damage and division of Staphylococcus aureus[J]. FASEB J, 2018, 32(7): 3707−3716. doi: 10.1096/fj.201701190R
    Horecker BL. The pentose phosphate pathway[J]. J Biol Chem, 2002, 277(50): 47965−47971. doi: 10.1074/jbc.X200007200
    Zamboni N, Fischer E, Laudert D, et al. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway[J]. J Bacteriol, 2004, 186(14): 4528−4534. doi: 10.1128/JB.186.14.4528-4534.2004
    Youssefian T, Drouin A, Masse JM, et al. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation[J]. Blood, 2002, 99(11): 4021−4029. doi: 10.1182/blood-2001-12-0191
    Yeaman MR. The role of platelets in antimicrobial host defense[J]. Clin Infect Dis, 1997, 25(5): 951−970. doi: 10.1086/516120
    Krijgsveld J, Zaat SA, Meeldijk J, et al. Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines[J]. J Biol Chem, 2000, 275(27): 20374−20381. doi: 10.1074/jbc.275.27.20374
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (59) PDF downloads(7) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint