Citation: | Zhenzhen Li, Qunxing An, Jinmei Xu, Jiajia Xin, Yaozhen Chen, Ning An, Shunli Gu, Jing Yi, Wen Yin. Platelets inhibit the proliferation of Staphylococcus epidermidis by directly down-regulating G6PD[J]. Blood&Genomics, 2022, 6(1): 28-35. doi: 10.46701/BG.2022012021131 |
[1] |
Tande AJ, Osmon DR, Greenwood-Quaintance KE, et al. Clinical characteristics and outcomes of prosthetic joint infection caused by small colony variant staphylococci[J]. mBio, 2014, 5(5): e01910−14. doi: 10.1128/mBio.01910-14
|
[2] |
Argemi X, Hansmann Y, Prola K, et al. Coagulase-negative staphylococci pathogenomics[J]. Int J Mol Sci, 2019, 20(5): 1215. doi: 10.3390/ijms20051215
|
[3] |
Lamagni T. Epidemiology and burden of prosthetic joint infections[J]. J Antimicrob Chemother, 2014, 69(suppl_1): i5−i10. doi: 10.1093/jac/dku247
|
[4] |
Li Z, Xiao Z, Li Z, et al. 116 cases of neonatal early-onset or late-onset sepsis: a single center retrospective analysis on pathogenic bacteria species distribution and antimicrobial susceptibility[J]. Int J Clin Exp Med, 2013, 6(8): 693–699.
|
[5] |
Franceschi AT, da Cunha ML. Adverse events related to the use of central venous catheters in hospitalized newborns[J]. Rev Lat Am Enfermagem, 2010, 18(2): 196−202. doi: 10.1590/s0104-11692010000200009
|
[6] |
Hira V, Sluijter M, Estevao S, et al. Clinical and molecular epidemiologic characteristics of coagulase-negative staphylococcal bloodstream infections in intensive care neonates[J]. Pediatr Infect Dis J, 2007, 26(7): 607−612. doi: 10.1097/INF.0b013e318060cc03
|
[7] |
Hischebeth GT, Randau TM, Ploeger MM, et al. Staphylococcus aureus versus Staphylococcus epidermidis in periprosthetic joint infection-Outcome analysis of methicillin-resistant versus methicillin-susceptible strains[J]. Diagn Microbiol Infect Dis, 2019, 93(2): 125−130. doi: 10.1016/j.diagmicrobio.2018.08.012
|
[8] |
Klingenberg C, Ronnestad A, Anderson AS, et al. Persistent strains of coagulase-negative staphylococci in a neonatal intensive care unit: virulence factors and invasiveness[J]. Clin Microbiol Infect, 2007, 13(11): 1100−1111. doi: 10.1111/j.1469-0691.2007.01818.x
|
[9] |
Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates[J]. Blood Rev, 2009, 23(4): 177−189. doi: 10.1016/j.blre.2009.04.001
|
[10] |
Gordon RJ, Miragaia M, Weinberg AD, et al. Staphylococcus epidermidis colonization is highly clonal across US cardiac centers[J]. J Infect Dis, 2012, 205(9): 1391−1398. doi: 10.1093/infdis/jis218
|
[11] |
Raad I, Alrahwan A, Rolston K. Staphylococcus epidermidis: emerging resistance and need for alternative agents[J]. Clin Infect Dis, 1998, 26(5): 1182−1187. doi: 10.1086/520285
|
[12] |
Bispo PJ, Hofling-Lima AL, Pignatari AC. Characterization of ocular methicillin-resistant Staphylococcus epidermidis isolates belonging predominantly to clonal complex 2 subcluster Ⅱ[J]. J Clin Microbiol, 2014, 52(5): 1412−1417. doi: 10.1128/JCM.03098-13
|
[13] |
Versteeg HH, Heemskerk JW, Levi M, et al. New fundamentals in hemostasis[J]. Physiol Rev, 2013, 93(1): 327−358. doi: 10.1152/physrev.00016.2011
|
[14] |
Kaufman RM, Djulbegovic B, Gernsheimer T, et al. Platelet transfusion: a clinical practice guideline from the AABB[J]. Ann Intern Med, 2015, 162(3): 205−213. doi: 10.7326/M14-1589
|
[15] |
Estcourt LJ, Birchall J, Allard S, et al. Guidelines for the use of platelet transfusions[J]. Br J Haematol, 2017, 176(3): 365−394. doi: 10.1111/bjh.14423
|
[16] |
Yeaman MR. Platelets: at the nexus of antimicrobial defence[J]. Nat Rev Microbiol, 2014, 12(6): 426−437. doi: 10.1038/nrmicro3269
|
[17] |
Moutinho B, Pinto B, Cardoso R, et al. Platelets structure, function and modulator capacity in replacement therapy[J]. Cardiovasc Hematol Disord Drug Targets, 2017, 17(3): 180−184. doi: 10.2174/1871529X18666171227152937
|
[18] |
Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood[J]. Nat Med, 2007, 13(4): 463−469. doi: 10.1038/nm1565
|
[19] |
Cognasse F, Nguyen KA, Damien P, et al. The inflammatory role of platelets via their TLRs and siglec receptors[J]. Front Immunol, 2015, 6: 83. doi: 10.3389/fimmu.2015.00083
|
[20] |
Yount NY, Yeaman MR. Multidimensional signatures in antimicrobial peptides[J]. Proc Natl Acad Sci U S A, 2004, 101(19): 7363−7368. doi: 10.1073/pnas.0401567101
|
[21] |
Durr M, Peschel A. Chemokines meet defensins: the merging concepts of chemoattractants and antimicrobial peptides in host defense[J]. Infect Immun, 2002, 70(12): 6515−6517. doi: 10.1128/IAI.70.12.6515-6517.2002
|
[22] |
Tang YQ, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets[J]. Infect Immun, 2002, 70(12): 6524−6533. doi: 10.1128/IAI.70.12.6524-6533.2002
|
[23] |
Zhang G, Han J, Welch EJ, et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway[J]. J Immunol, 2009, 182(12): 7997−8004. doi: 10.4049/jimmunol.0802884
|
[24] |
Abdulrehman AY, Jackson EC, McNicol A. Platelet activation by Streptococcus sanguinis is accompanied by MAP kinase phosphorylation[J]. Platelets, 2013, 24(1): 6−14. doi: 10.3109/09537104.2012.661105
|
[25] |
Sullam PM, Frank U, Yeaman MR, et al. Effect of thrombocytopenia on the early course of streptococcal endocarditis[J]. J Infect Dis, 1993, 168(4): 910−914. doi: 10.1093/infdis/168.4.910
|
[26] |
Sun H, Wang X, Degen JL, et al. Reduced thrombin generation increases host susceptibility to group A streptococcal infection[J]. Blood, 2009, 113(6): 1358−1364. doi: 10.1182/blood-2008-07-170506
|
[27] |
Semple JW, Freedman J. Platelets and innate immunity[J]. Cell Mol Life Sci, 2010, 67(4): 499−511. doi: 10.1007/s00018-009-0205-1
|
[28] |
Katz JN, Kolappa KP, Becker RC. Beyond thrombosis: the versatile platelet in critical illness[J]. Chest, 2011, 139(3): 658−668. doi: 10.1378/chest.10-1971
|
[29] |
Yeaman MR, Yount NY. Unifying themes in host defence effector polypeptides[J]. Nat Rev Microbiol, 2007, 5(9): 727−740. doi: 10.1038/nrmicro1744
|
[30] |
Maghsoudi O, Ranjbar R, Mirjalili SH, et al. Inhibitory activities of platelet-rich and platelet-poor plasma on the growth of pathogenic bacteria[J]. Iran J Pathol, 2017, 12(1): 79−87. doi: 10.30699/ijp.2017.23386
|
[31] |
Hong H, Xiao W, Lazarus HM, et al. Detection of septic transfusion reactions to platelet transfusions by active and passive surveillance[J]. Blood, 2016, 127(4): 496−502. doi: 10.1182/blood-2015-07-655944
|
[32] |
Jianjun W, Guiqiu S, Maohong B, et al. Guideline for the collection and preparation of non-transfusion autologous platelet concentrate or platelet-rich plasma from patients in hospitals[J]. Blood Genomics, 2021, 5(2): 73−82. doi: 10.46701/BG.2021022021128
|
[33] |
Wong CH, Jenne CN, Petri B, et al. Nucleation of platelets with blood-borne pathogens on Kupffer cells precedes other innate immunity and contributes to bacterial clearance[J]. Nat Immunol, 2013, 14(8): 785−792. doi: 10.1038/ni.2631
|
[34] |
Iannacone M, Sitia G, Isogawa M, et al. Platelets mediate cytotoxic T lymphocyte-induced liver damage[J]. Nat Med, 2005, 11(11): 1167−1169. doi: 10.1038/nm1317
|
[35] |
Elzey BD, Sprague DL, Ratliff TL. The emerging role of platelets in adaptive immunity[J]. Cell Immunol, 2005, 238(1): 1−9. doi: 10.1016/j.cellimm.2005.12.005
|
[36] |
Clawson CC, White JG. Platelet interaction with bacteria. I. Reaction phases and effects of inhibitors[J]. Am J Pathol, 1971, 65(2): 367–380.
|
[37] |
Kessler CM, Nussbaum E, Tuazon CU. In vitro correlation of platelet aggregation with occurrence of disseminated intravascular coagulation and subacute bacterial endocarditis[J]. J Lab Clin Med, 1987, 109(6): 647–652.
|
[38] |
Bayer AS, Ramos MD, Menzies BE, et al. Hyperproduction of alpha-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis: a host defense role for platelet microbicidal proteins[J]. Infect Immun, 1997, 65(11): 4652−4660. doi: 10.1128/iai.65.11.4652-4660.1997
|
[39] |
Mohan KV, Rao SS, Gao Y, et al. Enhanced antimicrobial activity of peptide-cocktails against common bacterial contaminants of ex vivo stored platelets[J]. Clin Microbiol Infect, 2014, 20(1): O39−O46. doi: 10.1111/1469-0691.12326
|
[40] |
Ivanov IB, Gritsenko VA. Comparative activities of cattle and swine platelet microbicidal proteins[J]. Probiotics Antimicrob Proteins, 2009, 1(2): 148. doi: 10.1007/s12602-009-9016-9
|
[41] |
Mohan KV, Rao SS, Atreya CD. Evaluation of antimicrobial peptides as novel bactericidal agents for room temperature-stored platelets[J]. Transfusion, 2010, 50(1): 166−173. doi: 10.1111/j.1537-2995.2009.02376.x
|
[42] |
Khardori N, Yassien M, Wilson K. Tolerance of Staphylococcus epidermidis grown from indwelling vascular catheters to antimicrobial agents[J]. J Ind Microbiol, 1995, 15(3): 148−151. doi: 10.1007/BF01569818
|
[43] |
Otto M. Staphylococcus epidermidis-the 'accidental' pathogen[J]. Nat Rev Microbiol, 2009, 7(8): 555−567. doi: 10.1038/nrmicro2182
|
[44] |
Rupp ME, Ulphani JS, Fey PD, et al. Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model[J]. Infect Immun, 1999, 67(5): 2627−2632. doi: 10.1128/IAI.67.5.2627-2632.1999
|
[45] |
Vuong C, Voyich JM, Fischer ER, et al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system[J]. Cell Microbiol, 2004, 6(3): 269−275. doi: 10.1046/j.1462-5822.2004.00367.x
|
[46] |
Kristian SA, Birkenstock TA, Sauder U, et al. Biofilm formation induces C3a release and protects Staphylococcus epidermidis from IgG and complement deposition and from neutrophil-dependent killing[J]. J Infect Dis, 2008, 197(7): 1028−1035. doi: 10.1086/528992
|
[47] |
Benjamin RJ, Dy B, Perez J, et al. Bacterial culture of apheresis platelets: a mathematical model of the residual rate of contamination based on unconfirmed positive results[J]. Vox Sang, 2014, 106(1): 23−30. doi: 10.1111/vox.12065
|
[48] |
Kou YT, Pagotto F, Hannach B, et al. Fatal false-negative transfusion infection involving a buffy coat platelet pool contaminated with biofilm-positive Staphylococcus epidermidis: a case report[J]. Transfusion, 2015, 55(10): 2384−2389. doi: 10.1111/trf.13154
|
[49] |
Kerrigan SW, Clarke N, Loughman A, et al. Molecular basis for Staphylococcus aureus-mediated platelet aggregate formation under arterial shear in vitro[J]. Arterioscl Throm Vas Biol, 2008, 28(2): 335−340. doi: 10.1161/ATVBAHA.107.152058
|
[50] |
Xu J, Yi J, Zhang H, et al. Platelets directly regulate DNA damage and division of Staphylococcus aureus[J]. FASEB J, 2018, 32(7): 3707−3716. doi: 10.1096/fj.201701190R
|
[51] |
Horecker BL. The pentose phosphate pathway[J]. J Biol Chem, 2002, 277(50): 47965−47971. doi: 10.1074/jbc.X200007200
|
[52] |
Zamboni N, Fischer E, Laudert D, et al. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway[J]. J Bacteriol, 2004, 186(14): 4528−4534. doi: 10.1128/JB.186.14.4528-4534.2004
|
[53] |
Youssefian T, Drouin A, Masse JM, et al. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation[J]. Blood, 2002, 99(11): 4021−4029. doi: 10.1182/blood-2001-12-0191
|
[54] |
Yeaman MR. The role of platelets in antimicrobial host defense[J]. Clin Infect Dis, 1997, 25(5): 951−970. doi: 10.1086/516120
|
[55] |
Krijgsveld J, Zaat SA, Meeldijk J, et al. Thrombocidins, microbicidal proteins from human blood platelets, are C-terminal deletion products of CXC chemokines[J]. J Biol Chem, 2000, 275(27): 20374−20381. doi: 10.1074/jbc.275.27.20374
|