Volume 5 Issue 2
Dec.  2021
Turn off MathJax
Article Contents
Yuxuan Wu, Zou Xiang. The combination of DNA methyltransferase inhibitor therapy and immunotherapy for acute myeloid leukemia[J]. Blood&Genomics, 2021, 5(2): 97-106. doi: 10.46701/BG.2021022021132
Citation: Yuxuan Wu, Zou Xiang. The combination of DNA methyltransferase inhibitor therapy and immunotherapy for acute myeloid leukemia[J]. Blood&Genomics, 2021, 5(2): 97-106. doi: 10.46701/BG.2021022021132

The combination of DNA methyltransferase inhibitor therapy and immunotherapy for acute myeloid leukemia

doi: 10.46701/BG.2021022021132
More Information
  • Corresponding author: Zou Xiang, Department of Health Technology and Informatics, Faculty of Health and Social Sciences, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. E-mail: xiang.y.zou@polyu.edu.hk
  • Received Date: 2021-11-22
  • Accepted Date: 2021-12-13
  • Rev Recd Date: 2021-12-09
  • Available Online: 2022-01-06
  • Publish Date: 2021-12-31
  • Acute myeloid leukemia (AML), the most common form of acute leukemia in adults, is characterized by abnormal proliferation and blocked maturation and differentiation of myeloid precursor cells. AML is an aggressive cancer that progresses rapidly without treatment. Therefore, effective treatment modalities should be implemented immediately after diagnosis. The mainstay of classical AML therapy has been chemotherapy, which is not suitable for relapsing or refractory patients, especially elderly patients. Among emerging novel therapeutic approaches for AML, epigenetic therapy and immunotherapy represent two exciting therapeutic developments. This review focuses on discussion of the therapeutic considerations for AML from the perspective of combination treatment, which incorporates both DNA methyltransferase inhibitor therapy, as one of the most promising epigenetic therapies, and immune checkpoint inhibitor or dendritic cell-based vaccination treatments, as examples of immunotherapy. Both challenges and rationale in the optimization of therapeutic approaches, as well as recent clinical trial developments, along this line are summarized.

     

  • loading
  • [1]
    Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia[J]. N Engl J Med, 2015, 373(12): 1136−1152. doi: 10.1056/NEJMra1406184
    [2]
    Wouters BJ, Delwel R. Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia[J]. Blood, 2016, 127(1): 42−52. doi: 10.1182/blood-2015-07-604512
    [3]
    Podoltsev NA, Stahl M, Zeidan AM, et al. Selecting initial treatment of acute myeloid leukaemia in older adults[J]. Blood Rev, 2017, 31(2): 43−62. doi: 10.1016/j.blre.2016.09.005
    [4]
    De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update[J]. Blood Cancer J, 2016, 6(7): e441−e441. doi: 10.1038/bcj.2016.50
    [5]
    Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells[J]. Blood, 2017, 129(12): 1577−1585. doi: 10.1182/blood-2016-10-696054
    [6]
    Maedeh A, Bita D, Shiva E, et al. Expanding the classification of leukemia by the World Health Organization over time[J]. Haematol Int J, 2019, 3(1): 000138. doi: 10.23880/hij-16000138
    [7]
    Tiong IS, Wei AH. New drugs creating new challenges in acute myeloid leukemia[J]. Genes Chromosomes and Cancer, 2019, 58(12): 903−914. doi: 10.1002/gcc.22750
    [8]
    Bewersdorf JP, Shallis R, Stahl M, et al. Epigenetic therapy combinations in acute myeloid leukemia: what are the options?[J]. Ther Adv Hematol, 2019, 10: 2040620718816698.
    [9]
    Bacher U, Schnittger S, Haferlach T. Molecular genetics in acute myeloid leukemia[J]. Curr Opin Oncol, 2010, 22(6): 646−655. doi: 10.1097/CCO.0b013e32833ed806
    [10]
    Klco JM, Spencer DH, Miller CA, et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia[J]. Cancer cell, 2014, 25(3): 379−392. doi: 10.1016/j.ccr.2014.01.031
    [11]
    Döhner H, Wei AH, Löwenberg B. Towards precision medicine for AML[J]. Nat Rev Clin Oncol, 2021, 18(9): 577−590. doi: 10.1038/s41571-021-00509-w
    [12]
    Verma S, Dhanda H, Singh A, et al. Systematic review of epigenetic targets in acute myeloid leukemia[J]. Am J Blood Res, 2021, 11(5): 458–471.
    [13]
    Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy[J]. Nature, 2004, 429(6990): 457−463. doi: 10.1038/nature02625
    [14]
    Ley TJ, Miller C, Ding L, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia[J]. N Engl J Med, 2013, 368(22): 2059−2074. doi: 10.1056/NEJMoa1301689
    [15]
    Figueroa ME, Lugthart S, Li Y, et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia[J]. Cancer cell, 2010, 17(1): 13−27. doi: 10.1016/j.ccr.2009.11.020
    [16]
    Caiado F, Maia-Silva D, Jardim C, et al. Lineage tracing of acute myeloid leukemia reveals the impact of hypomethylating agents on chemoresistance selection[J]. Nat Commun, 2019, 10(1): 4986. doi: 10.1038/s41467-019-12983-z
    [17]
    Fennell KA, Bell CC, Dawson MA. Epigenetic therapies in acute myeloid leukemia: where to from here?[J]. Blood, 2019, 134(22): 1891−1901. doi: 10.1182/blood.2019003262
    [18]
    Gambacorta V, Gnani D, Vago L, et al. Epigenetic therapies for acute myeloid leukemia and their immune-related effects[J]. Front Cell Dev Biol, 2019, 7: 207. doi: 10.3389/fcell.2019.00207
    [19]
    Wong KK, Lawrie CH, Green TM. Oncogenic roles and inhibitors of DNMT1, DNMT3A, and DNMT3B in acute myeloid leukaemia[J]. Biomark Insights, 2019, 14: 1177271919846454. doi: 10.1177/1177271919846454
    [20]
    Chaudry SF, Chevassut TJ. Epigenetic guardian: a review of the DNA methyltransferase DNMT3A in acute myeloid leukaemia and clonal haematopoiesis[J]. Biomed Res Int, 2017, 2017: 5473197. doi: 10.1155/2017/5473197
    [21]
    Daura-Oller E, Cabre M, Montero MA, et al. Specific gene hypomethylation and cancer: new insights into coding region feature trends[J]. Bioinformation, 2009, 3(8): 340−343. doi: 10.6026/97320630003340
    [22]
    Vigil CE, Martin-Santos T, Garcia-Manero G. Safety and efficacy of azacitidine in myelodysplastic syndromes[J]. Drug Des Devel Ther, 2010, 4: 221−229. doi: 10.2147/dddt.s3143
    [23]
    Ganesan A, Arimondo PB, Rots MG, et al. The timeline of epigenetic drug discovery: from reality to dreams[J]. Clin epigenetics, 2019, 11(1): 174. doi: 10.1186/s13148-019-0776-0
    [24]
    Santini V, Ossenkoppele GJ. Hypomethylating agents in the treatment of acute myeloid leukemia: a guide to optimal use[J]. Crit Rev Oncol Hematol, 2019, 140: 1−7. doi: 10.1016/j.critrevonc.2019.05.013
    [25]
    Lund K, Cole JJ, VanderKraats ND, et al. DNMT inhibitors reverse a specific signature of aberrant promoter DNA methylation and associated gene silencing in AML[J]. Genome Biol, 2014, 15(8): 406. doi: 10.1186/s13059-014-0406-2
    [26]
    Ørskov AD, Treppendahl MB, Skovbo A, et al. Hypomethylation and up-regulation of PD-1 in T cells by azacytidine in MDS/AML patients: a rationale for combined targeting of PD-1 and DNA methylation[J]. Oncotarget, 2015, 6(11): 9612−9626. doi: 10.18632/oncotarget.3324
    [27]
    Weissmann S, Alpermann T, Grossmann V, et al. Landscape of TET2 mutations in acute myeloid leukemia[J]. Leukemia, 2012, 26(5): 934−942. doi: 10.1038/leu.2011.326
    [28]
    Megías-Vericat JE, Ballesta-López O, Barragán E, et al. IDH1-mutated relapsed or refractory AML: current challenges and future prospects[J]. Blood Lymphat Cancer, 2019, 9: 19−32. doi: 10.2147/BLCTT.S177913
    [29]
    Marcucci G, Metzeler KH, Schwind S, et al. Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia[J]. J Clin Oncol, 2012, 30(7): 742−750. doi: 10.1200/JCO.2011.39.2092
    [30]
    Wang Y, Xiao M, Chen X, et al. WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation[J]. Mol Cell, 2015, 57(4): 662−673. doi: 10.1016/j.molcel.2014.12.023
    [31]
    Assi R, Kantarjian H, Ravandi F, et al. Immune therapies in acute myeloid leukemia: a focus on monoclonal antibodies and immune checkpoint inhibitors[J]. Curr Opin Hematol, 2018, 25(2): 136−145. doi: 10.1097/MOH.0000000000000401
    [32]
    Stahl M, Goldberg AD. Immune checkpoint inhibitors in acute myeloid leukemia: novel combinations and therapeutic targets[J]. Curr Oncol Rep, 2019, 21(4): 37. doi: 10.1007/s11912-019-0781-7
    [33]
    Dunn J, Rao S. Epigenetics and immunotherapy: the current state of play[J]. Mol Immunol, 2017, 87: 227−239. doi: 10.1016/j.molimm.2017.04.012
    [34]
    Liu Y, Bewersdorf JP, Stahl M, et al. Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: The dawn of a new era?[J]. Blood Rev, 2019, 34: 67−83. doi: 10.1016/j.blre.2018.12.001
    [35]
    Knorr DA, Goldberg AD, Stein EM, et al. Immunotherapy for acute myeloid leukemia: from allogeneic stem cell transplant to novel therapeutics[J]. Leuk Lymphoma, 2019, 60(14): 3350−3362. doi: 10.1080/10428194.2019.1639167
    [36]
    Terranova-Barberio M, Thomas S, Munster PN. Epigenetic modifiers in immunotherapy: a focus on checkpoint inhibitors[J]. Immunotherapy, 2016, 8(6): 705−719. doi: 10.2217/imt-2016-0014
    [37]
    Giannopoulos K. Targeting immune signaling checkpoints in acute myeloid leukemia[J]. J Clin Med, 2019, 8(2): 236. doi: 10.3390/jcm8020236
    [38]
    Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy[J]. Cell Res, 2017, 27(1): 74−95. doi: 10.1038/cr.2016.157
    [39]
    Jang GY, Kim YS, Lee SE, et al. Improvement of DC-based vaccines using adjuvant TLR4-binding 60S acidic ribosomal protein P2 and immune checkpoint inhibitors[J]. Cancer Immunol Immunother, 2021, 70(4): 1075−1088. doi: 10.1007/s00262-020-02759-6
    [40]
    Capelletti M, Liegel J, Themeli M, et al. Potent synergy between combination of chimeric antigen receptor (CAR) therapy targeting CD19 in conjunction with dendritic cell (DC)/tumor fusion vaccine in hematological malignancies[J]. Biol Blood Marrow Transplant, 2020, 26(3): S42–S43.
    [41]
    Van Acker HH, Anguille S, De Reu H, et al. Interleukin-15-cultured dendritic cells enhance anti-tumor gamma delta T cell functions through IL-15 secretion[J]. Front Immunol, 2018, 9: 658. doi: 10.3389/fimmu.2018.00658
    [42]
    Shen Z, Gu X, Mao W, et al. Dendritic cells fused with endothelial progenitor cells play immunosuppressive effects on angiogenesis in acute myeloid leukemia mice[J]. Am J Transl Res, 2019, 11(5): 2816–2829.
    [43]
    Jinushi M, Takehara T, Tatsumi T, et al. Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid[J]. Int J Cancer, 2003, 104(3): 354−361. doi: 10.1002/ijc.10966
    [44]
    Yi JS, Cox MA, Zajac AJ. T-cell exhaustion: characteristics, causes and conversion[J]. Immunology, 2010, 129(4): 474−481. doi: 10.1111/j.1365-2567.2010.03255.x
    [45]
    Berger R, Rotem-Yehudar R, Slama G, et al. Phase Ⅰ safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies[J]. Clin Cancer Res, 2008, 14(10): 3044−3051. doi: 10.1158/1078-0432.CCR-07-4079
    [46]
    Stroopinsky D, Liegel J, Bhasin M, et al. Leukemia vaccine overcomes limitations of checkpoint blockade by evoking clonal T cell responses in a murine acute myeloid leukemia model[J]. Haematologica, 2021, 106(5): 1330−1342. doi: 10.3324/haematol.2020.259457
    [47]
    Lichtenegger FS, Krupka C, Haubner S, et al. Recent developments in immunotherapy of acute myeloid leukemia[J]. J Hematol Oncol, 2017, 10(1): 142. doi: 10.1186/s13045-017-0505-0
    [48]
    Wong KK, Hassan R, Yaacob NS. Hypomethylating agents and immunotherapy: therapeutic synergism in acute myeloid leukemia and myelodysplastic syndromes[J]. Front Oncol, 2021, 11: 624742. doi: 10.3389/fonc.2021.624742
    [49]
    Lichtenegger FS, Schnorfeil FM, Rothe M, et al. Toll-like receptor 7/8‐matured RNA‐transduced dendritic cells as post‐remission therapy in acute myeloid leukaemia: results of a phase I trial[J]. Clin Transl Immunology, 2020, 9(3): e1117. doi: 10.1002/cti2.1117
    [50]
    Anguille S, Van de Velde AL, Smits EL, et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia[J]. Blood, 2017, 130(15): 1713−1721. doi: 10.1182/blood-2017-04-780155
    [51]
    Rosenblatt J, Stone RM, Uhl L, et al. Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions[J]. Sci Transl Med, 2016, 8(368): 368ra171. doi: 10.1126/scitranslmed.aag1298
    [52]
    Hübbe ML, Jæhger DE, Andresen TL, et al. Leveraging endogenous dendritic cells to enhance the therapeutic efficacy of adoptive T-cell therapy and checkpoint blockade[J]. Front Immunol, 2020, 11: 578349. doi: 10.3389/fimmu.2020.578349
    [53]
    Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy[J]. Nat Commun, 2019, 10(1): 5408. doi: 10.1038/s41467-019-13368-y
    [54]
    Lichtenegger FS, Schnorfeil FM, Hiddemann W, et al. Current strategies in immunotherapy for acute myeloid leukemia[J]. Immunotherapy, 2013, 5(1): 63−78. doi: 10.2217/imt.12.145
    [55]
    Escobar A, Lopez M, Serrano A, et al. Dendritic cell immunizations alone or combined with low doses of interleukin-2 induce specific immune responses in melanoma patients[J]. Clin Exp Immunol, 2005, 142(3): 555−568. doi: 10.1111/j.1365-2249.2005.02948.x
    [56]
    Radpour R, Stucki M, Riether C, et al. Epigenetic silencing of immune-checkpoint receptors in bone marrow-infiltrating T cells in acute myeloid leukemia[J]. Front Oncol, 2021, 11: 663406. doi: 10.3389/fonc.2021.663406
    [57]
    Srivastava P, Paluch BE, Matsuzaki J, et al. Induction of cancer testis antigen expression in circulating acute myeloid leukemia blasts following hypomethylating agent monotherapy[J]. Oncotarget, 2016, 7(11): 12840−12856. doi: 10.18632/oncotarget.7326
    [58]
    Griffiths EA, Srivastava P, Matsuzaki J, et al. NY-ESO-1 vaccination in combination with decitabine induces antigen-specific T-lymphocyte responses in patients with myelodysplastic syndrome[J]. Clin Cancer Res, 2018, 24(5): 1019−1029. doi: 10.1158/1078-0432.CCR-17-1792
    [59]
    Srivastava P, Paluch BE, Matsuzaki J, et al. Immunomodulatory action of SGI-110, a hypomethylating agent, in acute myeloid leukemia cells and xenografts[J]. Leuk Res, 2014, 38(11): 1332−1341. doi: 10.1016/j.leukres.2014.09.001
    [60]
    Šímová J, Pollakova V, Indrova M, et al. Immunotherapy augments the effect of 5-azacytidine on HPV16-associated tumours with different MHC class I-expression status[J]. Br J Cancer, 2011, 105(10): 1533−1541. doi: 10.1038/bjc.2011.428
    [61]
    Wang LX, Mei ZY, Zhou JH, et al. Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumor specific cytotoxic T lymphocyte responses[J]. PLoS One, 2013, 8(5): e62924. doi: 10.1371/journal.pone.0062924
    [62]
    Luo N, Nixon MJ, Gonzalez-Ericsson PI, et al. DNA methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte responses in breast cancer[J]. Nat Commun, 2018, 9(1): 248. doi: 10.1038/s41467-017-02630-w
    [63]
    Leone P, Shin EC, Perosa F, et al. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells[J]. J Nat Cancer Inst, 2013, 105(16): 1172−1187. doi: 10.1093/jnci/djt184
    [64]
    Abruzzese MP, Bilotta MT, Fionda C, et al. Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of cMYC-IRF4-miR-125b interplay[J]. J Hematol Oncol, 2016, 9(1): 134. doi: 10.1186/s13045-016-0362-2
    [65]
    Yang H, Bueso-Ramos C, DiNardo C, et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents[J]. Leukemia, 2014, 28(6): 1280−1288. doi: 10.1038/leu.2013.355
    [66]
    Daver N, Garcia-Manero G, Basu S, et al. Efficacy, safety, and biomarkers of response to azacitidine and nivolumab in relapsed/refractory acute myeloid leukemia: a nonrandomized, open-label, phase Ⅱ study[J]. Cancer Discov, 2019, 9(3): 370−383. doi: 10.1158/2159-8290.CD-18-0774
    [67]
    Nahas MR, Cole L, Stroopinsky D, et al. Hypomethylating agent leads to enhanced immunogenicity of a dendritic cell/acute myeloid leukemia fusion vaccine and prolonged survival in an immunocompetent mouse model[J]. Blood, 2017, 130(Suppl_1): 1347.
    [68]
    Nahas MR, Stroopinsky D, Rosenblatt J, et al. Hypomethylating agent alters the immune microenvironment in acute myeloid leukaemia (AML) and enhances the immunogenicity of a dendritic cell/AML vaccine[J]. Br J Haematol, 2019, 185(4): 679−690. doi: 10.1111/bjh.15818
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (144) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return