Citation: | Yan Peng, Zhenqing Feng. The progress and perspectives of CAR-T cell therapy[J]. Blood&Genomics, 2021, 5(2): 107-111. doi: 10.46701/BG.2021022021126 |
[1] |
Brown CE, Alizadeh D, Starr R, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy[J]. N Engl J Med, 2016, 375(26): 2561−2569. doi: 10.1056/NEJMoa1610497
|
[2] |
Zimmermann K, Kuehle J, Dragon AC, et al. Design and characterization of an “All-in-One” lentiviral vector system combining constitutive anti-GD2 CAR expression and inducible cytokines[J]. Cancers, 2020, 12(2): 375. doi: 10.3390/cancers12020375
|
[3] |
Dragon AC, Zimmermann K, Nerreter T, et al. CAR-T cells and TRUCKs that recognize an EBNA-3C-derivedepitope presented on HLA-B*35control Epstein-Barrvirus-associated lymphoproliferation[J]. J Immunother Cancer, 2020, 8(2): e000736. doi: 10.1136/jitc-2020-000736
|
[4] |
Adachi K, Kano Y, Nagai T, et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor[J]. Nat Biotechnol, 2018, 36(4): 346−351. doi: 10.1038/nbt.4086
|
[5] |
Duan D, Wang K, Wei C, et al. The BCMA-targeted fourth-generation CAR-T cells secreting IL-7 and CCL19 for therapy of refractory/recurrent multiple myeloma[J]. Front Immunol, 2021, 12: 609421. doi: 10.3389/fimmu.2021.609421
|
[6] |
Pang N, Shi J, Qin L, et al. IL-7 and CCL19-secreting CAR-T cell therapy for tumors with positive glypican-3 or mesothelin[J]. J Hematol Oncol, 2021, 14(1): 118. doi: 10.1186/s13045-021-01128-9
|
[7] |
Batra SA, Rathi P, Guo L, et al. Glypican-3-specific CAR T cells coexpressing IL15 and IL21 have superior expansion and antitumor activity against hepatocellular carcinoma[J]. Cancer Immunol Res, 2020, 8(3): 309−320. doi: 10.1158/2326-6066.CIR-19-0293
|
[8] |
Zhao J, Lin Q, Song Y, et al. Universal CARs, universal T cells, and universal CAR T cells[J]. J Hematol Oncol, 2018, 11(1): 132. doi: 10.1186/s13045-018-0677-2
|
[9] |
Hou JZ, Ye JC, Pu JJ, et al. Novel agents and regimens for hematological malignancies: recent updates from 2020 ASH annual meeting[J]. J Hematol Oncol, 2021, 14(1): 66. doi: 10.1186/s13045-021-01077-3
|
[10] |
Lin H, Cheng J, Mu W, et al. Advances in universal CAR-T cell therapy[J]. Front Immunol, 2021, 12: 744823. doi: 10.3389/fimmu.2021.744823
|
[11] |
Zhang Y, Li P, Fang H, et al. Paving the way towards universal chimeric antigen receptor therapy in cancer treatment: current landscape and progress[J]. Front Immunol, 2020, 11: 604915. doi: 10.3389/fimmu.2020.604915
|
[12] |
Anon. Universal CAR T cells treat leukemia[J]. Cancer Discov, 2017, 7(4): 342. doi: 10.1158/2159-8290.CD-NB2017-023
|
[13] |
Hu Y, Zhou Y, Zhang M, et al. CRISPR/Cas9-engineered universal CD19/CD22 dual-targeted CAR-T cell therapy for relapsed/refractory B-cell acute lymphoblastic leukemia[J]. Clin Cancer Res, 2021, 27(10): 2764−2772. doi: 10.1158/1078-0432.CCR-20-3863
|
[14] |
Li S, Wang X, Yuan Z, et al. Eradication of T-ALL cells by CD7-targeted universal CAR-T cells and initial test of ruxolitinib-based CRS management[J]. Clin Cancer Res, 2021, 27(5): 1242−1246. doi: 10.1158/1078-0432.CCR-20-1271
|
[15] |
Wermke M, Kraus S, Ehninger A, et al. Proof of concept for a rapidly switchable universal CAR-T platform with UniCAR-T-CD123 in relapsed/refractory AML[J]. Blood, 2021, 137(22): 3145−3148. doi: 10.1182/blood.2020009759
|
[16] |
Yang LR, Li L, Meng MY, et al. Evaluation of piggyBac-mediated anti-CD19 CAR-T cells after ex vivo expansion with aAPCs or magnetic beads[J]. J Cell Mol Med, 2021, 25(2): 686−700. doi: 10.1111/jcmm.16118
|
[17] |
Chicaybam L, Bonamino MH, Luckow Invitti A, et al. Overhauling CAR T cells to improve efficacy, safety and cost[J]. Cancers (Basel), 2020, 12(9): 2360. doi: 10.3390/cancers12092360
|
[18] |
Roybal KT, Rupp LJ, Morsut L, et al. Precision tumor recognition by T Cells with combinatorial antigen-sensing circuits[J]. Cell, 2016, 164(4): 770−779. doi: 10.1016/j.cell.2016.01.011
|
[19] |
Wu MR, Jusiak B, Lu TK, et al. Engineering advanced cancer therapies with synthetic biology[J]. Nat Rev Cancer, 2019, 19(4): 187−195. doi: 10.1038/s41568-019-0121-0
|
[20] |
Cho JH, Collins JJ, Wong WW, et al. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses[J]. Cell, 2018, 173(6): 1426−1438.e1411. doi: 10.1016/j.cell.2018.03.038
|
[21] |
Moghimi B, Muthugounder S, Jambon S, et al. Preclinical assessment of the efficacy and specificity of GD2-B7H3 SynNotch CAR-T in metastatic neuroblastoma[J]. Nat Commun, 2021, 12(1): 511. doi: 10.1038/s41467-020-20785-x
|
[22] |
Raj D, Yang MH, Rodgers D, et al. Switchable CAR-T cells mediate remission in metastatic pancreatic ductal adenocarcinoma[J]. Gut, 2019, 68(6): 1052−1064. doi: 10.1136/gutjnl-2018-316595
|
[23] |
Rodgers DT, Mazagova M, Hampton EN, et al. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies[J]. Proc Natl Acad Sci, 2016, 113(4): E459−E468. doi: 10.1073/pnas.1524155113
|
[24] |
Zhao W, Jia LZ, Zhang MJ, et al. The killing effect of novel bi-specific Trop2/PD-L1 CAR-T cell targeted gastric cancer[J]. Am J Cancer Res, 2019, 9(8): 1846–1856.
|
[25] |
Zhang W, Huang Q, Xiao W, et al. Advances in anti-tumor treatments targeting the CD47/SIRPalpha axis[J]. Front Immunol, 2020, 11: 18. doi: 10.3389/fimmu.2020.00018
|
[26] |
Shu R, Evtimov VJ, Hammett MV, et al. Engineered CAR-T cells targeting TAG-72 and CD47 in ovarian cancer[J]. Mol Ther Oncolytics, 2021, 20: 325−341. doi: 10.1016/j.omto.2021.01.002
|