Volume 5 Issue 1
Jun.  2021
Turn off MathJax
Article Contents
Xiaowei Sun, Wenyue Zheng, Rui Hua, Yujie Liu, Li Wang, Yun-Gi Kim, Xinqi Liu, Hitomi Mimuro, Zhongyang Shen, Lian Li, Sei Yoshida. Macropinocytosis and SARS-CoV-2 cell entry[J]. Blood&Genomics, 2021, 5(1): 1-12. doi: 10.46701/BG.2021012021110
Citation: Xiaowei Sun, Wenyue Zheng, Rui Hua, Yujie Liu, Li Wang, Yun-Gi Kim, Xinqi Liu, Hitomi Mimuro, Zhongyang Shen, Lian Li, Sei Yoshida. Macropinocytosis and SARS-CoV-2 cell entry[J]. Blood&Genomics, 2021, 5(1): 1-12. doi: 10.46701/BG.2021012021110

Macropinocytosis and SARS-CoV-2 cell entry

doi: 10.46701/BG.2021012021110
More Information
  • Corresponding author: Zhongyang Shen, Organ Transplant Department, Tianjin First Central Hospital, Tianjin 300192, China. E-mail: zhongyangshen@vip.sina.com; Lian Li, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, No. 94 Weijin Road, Tianjin 300071, China. E-mail: lilian523@nankai.edu.cn; Sei Yoshida, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, No. 94, Weijin Road, Tianjin 300071, China. E-mail: seiyoshi@nankai.edu.cn
  • Received Date: 2021-04-05
  • Accepted Date: 2021-05-08
  • Rev Recd Date: 2021-04-25
  • Publish Date: 2021-06-01
  • Macropinocytosis is a type of large-scale endocytosis that is triggered by the interaction of receptor proteins and ligands, such as growth factors, cytokines, chemokines, and lipopolysaccharide (LPS). Macropinocytosis ingests the extracellular fluid solutes and conveys them into the lysosome in the context of cell growth and differentiation. Aside from its physiological functions, macropinocytosis has been observed in viral infections. While the infectious mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still unknown, recent studies suggest the involvement of macropinocytosis in its cell entry. In this review, we discuss the roles of endocytosis in SARS-CoV/SARS-CoV-2 cell entries and propose a hypothetical role of macropinocytosis in SARS-CoV-2 cell entry.


  • These authors contributed equally to this work.
  • loading
  • [1]
    Swanson JA. Phosphoinositides and engulfment[J]. Cell Microbiol, 2014, 16(10): 1473−1483. doi: 10.1111/cmi.12334
    Phuyal S, Farhan H. Multifaceted Rho GTPase signaling at the endomembranes[J]. Front Cell Dev Biol, 2019, 7: 127. doi: 10.3389/fcell.2019.00127
    Schaks M, Giannone G, Rottner K. Actin dynamics in cell migration[J]. Essays Biochem, 2019, 63(5): 483−495. doi: 10.1042/EBC20190015
    Mettlen M, Chen PH, Srinivasan S, et al. Regulation of clathrin-mediated endocytosis[J]. Annu Rev Biochem, 2018, 87: 871−896. doi: 10.1146/annurev-biochem-062917-012644
    Parton RG, McMahon KA, Wu YP. Caveolae: formation, dynamics, and function[J]. Curr Opin Cell Biol, 2020, 65: 8−16. doi: 10.1016/j.ceb.2020.02.001
    Swanson JA. Shaping cups into phagosomes and macropinosomes[J]. Nat Rev Mol Cell Biol, 2008, 9(8): 639−649. doi: 10.1038/nrm2447
    Cossart P, Helenius A. Endocytosis of viruses and bacteria[J]. Cold Spring Harb Perspect Biol, 2014, 6(8): a016972. doi: 10.1101/cshperspect.a016972
    Yoshida S, Pacitto R, Inoki K, et al. Macropinocytosis, mTORC1 and cellular growth control[J]. Cell Mol Life Sci, 2018, 75(7): 1227−1239. doi: 10.1007/s00018-017-2710-y
    Buckley CM, King JS. Drinking problems: mechanisms of macropinosome formation and maturation[J]. FEBS J, 2017, 284(22): 3778−3790. doi: 10.1111/febs.14115
    Stow JL, Hung Y, Wall AA. Macropinocytosis: insights from immunology and cancer[J]. Curr Opin Cell Biol, 2020, 65: 131−140. doi: 10.1016/j.ceb.2020.06.005
    Mercer J, Helenius A. Gulping rather than sipping: macropinocytosis as a way of virus entry[J]. Curr Opin Microbiol, 2012, 15(4): 490−499. doi: 10.1016/j.mib.2012.05.016
    Yoshida S, Sasakawa C. Exploiting host microtubule dynamics: a new aspect of bacterial invasion[J]. Trends Microbiol, 2003, 11(3): 139−143. doi: 10.1016/S0966-842X(03)00023-4
    Hume PJ, Singh V, Davidson AC, et al. Swiss army pathogen: the Salmonella entry toolkit[J]. Front Cell Infect Microbiol, 2017, 7: 348. doi: 10.3389/fcimb.2017.00348
    Mercer J, Helenius A. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells[J]. Science, 2008, 320(5875): 531−535. doi: 10.1126/science.1155164
    Quinn K, Brindley MA, Weller ML, et al. Rho GTPases modulate entry of Ebola virus and vesicular stomatitis virus pseudotyped vectors[J]. J Virol, 2009, 83(19): 10176−10186. doi: 10.1128/JVI.00422-09
    Glebov OO. Understanding SARS-CoV-2 endocytosis for COVID-19 drug repurposing[J]. FEBS J, 2020, 287(17): 3664−3671. doi: 10.1111/febs.15369
    Dubielecka PM, Cui P, Xiong XL, et al. Differential regulation of macropinocytosis by Abi1/Hssh3bp1 isoforms[J]. PLoS One, 2010, 5(5): e10430. doi: 10.1371/journal.pone.0010430
    Balaji K, Mooser C, Janson CM, et al. RIN1 orchestrates the activation of RAB5 GTPases and ABL tyrosine kinases to determine the fate of EGFR[J]. J Cell Sci, 2012, 125(Pt 23): 5887−5896. doi: 10.1242/jcs.113688
    Krishna S, Palm W, Lee Y, et al. PIKfyve regulates vacuole maturation and nutrient recovery following engulfment[J]. Dev Cell, 2016, 38(5): 536−547. doi: 10.1016/j.devcel.2016.08.001
    Ou XY, Liu Y, Lei XB, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV[J]. Nat Commun, 2020, 11(1): 1620. doi: 10.1038/s41467-020-15562-9
    Mulgaonkar N, Wang HQ, Mallawarachchi S, et al. Bcr-Abl tyrosine kinase inhibitor imatinib as a potential drug for COVID-19[EB/OL]. bioRxiv, 2020.
    Mugisha CS, Vuong HR, Puray-Chavez M, et al. A facile Q-RT-PCR assay for monitoring SARS-CoV-2 growth in cell culture[EB/OL]. bioRxiv, 2020.
    Chan JF, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan[J]. Emerg Microbes Infect, 2020, 9(1): 221−236. doi: 10.1080/22221751.2020.1719902
    Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579(7798): 270−273. doi: 10.1038/s41586-020-2012-7
    Yang ND, Shen HM. Targeting the endocytic pathway and autophagy process as a novel therapeutic strategy in COVID-19[J]. Int J Biol Sci, 2020, 16(10): 1724−1731. doi: 10.7150/ijbs.45498
    Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis[J]. Annu Rev Biochem, 2010, 79: 803−833. doi: 10.1146/annurev-biochem-060208-104626
    Dutta D, Donaldson JG. Search for inhibitors of endocytosis: intended specificity and unintended consequences[J]. Cell Logist, 2012, 2(4): 203−208. doi: 10.4161/cl.23967
    Baschieri F, Porshneva K, Montagnac G. Frustrated clathrin-mediated endocytosis-causes and possible functions[J]. J Cell Sci, 2020, 133(11): jcs240861. doi: 10.1242/jcs.240861
    Wang LH, Rothberg KG, Anderson RG. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation[J]. J Cell Biol, 1993, 123(5): 1107−1117. doi: 10.1083/jcb.123.5.1107
    Macia E, Ehrlich M, Massol R, et al. Dynasore, a cell-permeable inhibitor of dynamin[J]. Dev Cell, 2006, 10(6): 839−850. doi: 10.1016/j.devcel.2006.04.002
    Dutta D, Williamson CD, Cole NB, et al. Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis[J]. PLoS One, 2012, 7(9): e45799. doi: 10.1371/journal.pone.0045799
    Sieczkarski SB, Whittaker GR. Dissecting virus entry via endocytosis[J]. J Gen Virol, 2002, 83(Pt 7): 1535−1545. doi: 10.1099/0022-1317-83-7-1535
    Sandvig K, Kavaliauskiene S, Skotland T. Clathrin-independent endocytosis: an increasing degree of complexity[J]. Histochem Cell Biol, 2018, 150(2): 107−118. doi: 10.1007/s00418-018-1678-5
    Rodal SK, Skretting G, Garred Ø, et al. Extraction of cholesterol with methyl-β-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles[J]. Mol Biol Cell, 1999, 10(4): 961−974. doi: 10.1091/mbc.10.4.961
    Schnitzer JE, Oh P, Pinney E, et al. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules[J]. J Cell Biol, 1994, 127(5): 1217−1232. doi: 10.1083/jcb.127.5.1217
    Anderson HA, Chen Y, Norkin LC. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae[J]. Mol Biol Cell, 1996, 7(11): 1825−1834. doi: 10.1091/mbc.7.11.1825
    Egami Y, Taguchi T, Maekawa M, et al. Small GTPases and phosphoinositides in the regulatory mechanisms of macropinosome formation and maturation[J]. Front Physiol, 2014, 5: 374. doi: 10.3389/fphys.2014.00374
    Swanson JA, King JS. The breadth of macropinocytosis research[J]. Philos Trans R Soc Lond B Biol Sci, 2019, 374(1765): 20180146. doi: 10.1098/rstb.2018.0146
    Yoshida S, Hoppe AD, Araki N, et al. Sequential signaling in plasma-membrane domains during macropinosome formation in macrophages[J]. J Cell Sci, 2009, 122(18): 3250−3261. doi: 10.1242/jcs.053207
    Yoshida S, Gaeta I, Pacitto R, et al. Differential signaling during macropinocytosis in response to M-CSF and PMA in macrophages[J]. Front Physiol, 2015, 6: 8. doi: 10.3389/fphys.2015.00008
    Lanier MH, Kim T, Cooper JA. CARMIL2 is a novel molecular connection between vimentin and actin essential for cell migration and invadopodia formation[J]. Mol Biol Cell, 2015, 26(25): 4577−4588. doi: 10.1091/mbc.E15-08-0552
    Williamson CD, Donaldson JG. Arf6, JIP3, and dynein shape and mediate macropinocytosis[J]. Mol Biol Cell, 2019, 30(12): 1477−1489. doi: 10.1091/mbc.E19-01-0022
    Feliciano WD, Yoshida S, Straight SW, et al. Coordination of the Rab5 cycle on macropinosomes[J]. Traffic, 2011, 12(12): 1911−1922. doi: 10.1111/j.1600-0854.2011.01280.x
    Koivusalo M, Welch C, Hayashi H, et al. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling[J]. J Cell Biol, 2010, 188(4): 547−563. doi: 10.1083/jcb.200908086
    Maekawa M, Terasaka S, Mochizuki Y, et al. Sequential breakdown of 3-phosphorylated phosphoinositides is essential for the completion of macropinocytosis[J]. Proc Natl Acad Sci USA, 2014, 111(11): E978−E987. doi: 10.1073/pnas.1311029111
    Li HA, Marshall AJ. Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: a distinct branch of PI3K signaling[J]. Cell Signal, 2015, 27(9): 1789−1798. doi: 10.1016/j.cellsig.2015.05.013
    Porat-Shliom N, Kloog Y, Donaldson JG. A unique platform for H-Ras signaling involving clathrin-independent endocytosis[J]. Mol Biol Cell, 2008, 19(3): 765−775. doi: 10.1091/mbc.e07-08-0841
    Belouzard S, Millet JK, Licitra BN, et al. Mechanisms of coronavirus cell entry mediated by the viral spike protein[J]. Viruses, 2012, 4(6): 1011−1033. doi: 10.3390/v4061011
    Fung TS, Liu DX. Human coronavirus: host-pathogen interaction[J]. Annu Rev Microbiol, 2019, 73: 529−557. doi: 10.1146/annurev-micro-020518-115759
    Xiao XD, Chakraborti S, Dimitrov AS, et al. The SARS-CoV S glycoprotein: expression and functional characterization[J]. Biochem Biophys Res Commun, 2003, 312(4): 1159−1164. doi: 10.1016/j.bbrc.2003.11.054
    Millet JK, Whittaker GR. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis[J]. Virus Res, 2015, 202: 120−134. doi: 10.1016/j.virusres.2014.11.021
    Bosch BJ, Van Der Zee R, De Haan CAM, et al. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex[J]. J Virol, 2003, 77(16): 8801−8811. doi: 10.1128/JVI.77.16.8801-8811.2003
    Wong SK, Li WH, Moore MJ, et al. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2[J]. J Biol Chem, 2004, 279(5): 3197−3201. doi: 10.1074/jbc.C300520200
    Babcock GJ, Esshaki DJ, Thomas Jr WD, et al. Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor[J]. J Virol, 2004, 78(9): 4552−4560. doi: 10.1128/JVI.78.9.4552-4560.2004
    Li F, Li WH, Farzan M, et al. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor[J]. Science, 2005, 309(5742): 1864−1868. doi: 10.1126/science.1116480
    Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites[J]. Proc Natl Acad Sci USA, 2009, 106(14): 5871−5876. doi: 10.1073/pnas.0809524106
    Li F, Berardi M, Li WH, et al. Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain[J]. J Virol, 2006, 80(14): 6794−6800. doi: 10.1128/JVI.02744-05
    Bosch BJ, Bartelink W, Rottier PJM. Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide[J]. J Virol, 2008, 82(17): 8887−8890. doi: 10.1128/JVI.00415-08
    Matsuyama S, Nagata N, Shirato K, et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2[J]. J Virol, 2010, 84(24): 12658−12664. doi: 10.1128/JVI.01542-10
    Shulla A, Heald-Sargent T, Subramanya G, et al. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry[J]. J Virol, 2011, 85(2): 873−882. doi: 10.1128/JVI.02062-10
    Iwata-Yoshikawa N, Okamura T, Shimizu Y, et al. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection[J]. J Virol, 2019, 93(6): e01815−18. doi: 10.1128/JVI.01815-18
    Glowacka I, Bertram S, Müller MA, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response[J]. J Virol, 2011, 85(9): 4122−4134. doi: 10.1128/JVI.02232-10
    Li WH, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus[J]. Nature, 2003, 426(6965): 450−454. doi: 10.1038/nature02145
    Moore MJ, Dorfman T, Li WH, et al. Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2[J]. J Virol, 2004, 78(19): 10628−10635. doi: 10.1128/JVI.78.19.10628-10635.2004
    Hofmann H, Hattermann K, Marzi A, et al. S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients[J]. J Virol, 2004, 78(12): 6134−6142. doi: 10.1128/JVI.78.12.6134-6142.2004
    Jiang F, Yang JM, Zhang Y, et al. Angiotensin-converting enzyme 2 and angiotensin 1-7: novel therapeutic targets[J]. Nat Rev Cardiol, 2014, 11(7): 413−426. doi: 10.1038/nrcardio.2014.59
    Wysocki J, Schulze A, Batlle D. Novel variants of angiotensin converting enzyme-2 of shorter molecular size to target the kidney renin angiotensin system[J]. Biomolecules, 2019, 9(12): 886. doi: 10.3390/biom9120886
    Millet JK, Tang T, Nathan L, et al. Production of pseudotyped particles to study highly pathogenic coronaviruses in a biosafety level 2 setting[J]. J Vis Exp, 2019(145): e59010. doi: 10.3791/59010
    Simmons G, Reeves JD, Rennekamp AJ, et al. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry[J]. Proc Natl Acad Sci USA, 2004, 101(12): 4240−4245. doi: 10.1073/pnas.0306446101
    Inoue Y, Tanaka N, Tanaka Y, et al. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted[J]. J Virol, 2007, 81(16): 8722−8729. doi: 10.1128/JVI.00253-07
    Ohkuma S, Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents[J]. Proc Natl Acad Sci USA, 1978, 75(7): 3327−3331. doi: 10.1073/pnas.75.7.3327
    Mingo RM, Simmons JA, Shoemaker CJ, et al. Ebola virus and severe acute respiratory syndrome coronavirus display late cell entry kinetics: evidence that transport to NPC1+ endolysosomes is a rate-defining step[J]. J Virol, 2015, 89(5): 2931−2943. doi: 10.1128/JVI.03398-14
    Ren XF, Glende J, Al-Falah M, et al. Analysis of ACE2 in polarized epithelial cells: surface expression and function as receptor for severe acute respiratory syndrome-associated coronavirus[J]. J Gen Virol, 2006, 87(Pt 6): 1691−1695. doi: 10.1099/vir.0.81749-0
    Tseng CTK, Tseng J, Perrone L, et al. Apical entry and release of severe acute respiratory syndrome-associated coronavirus in polarized Calu-3 lung epithelial cells[J]. J Virol, 2005, 79(15): 9470−9479. doi: 10.1128/JVI.79.15.9470-9479.2005
    Kawase M, Shirato K, Van Der Hoek L, et al. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry[J]. J Virol, 2012, 86(12): 6537−6545. doi: 10.1128/JVI.00094-12
    Wang HL, Yang P, Liu KT, et al. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway[J]. Cell Res, 2008, 18(2): 290−301. doi: 10.1038/cr.2008.15
    Lambert DW, Clarke NE, Hooper NM, et al. Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain[J]. FEBS Lett, 2008, 582(2): 385−390. doi: 10.1016/j.febslet.2007.11.085
    Lai ZW, Lew RA, Yarski MA, et al. The identification of a calmodulin-binding domain within the cytoplasmic tail of angiotensin-converting enzyme-2[J]. Endocrinology, 2009, 150(5): 2376−2381. doi: 10.1210/en.2008-1274
    Myers MD, Ryazantsev S, Hicke L, et al. Calmodulin promotes N-BAR domain-mediated membrane constriction and endocytosis[J]. Dev Cell, 2016, 37(2): 162−173. doi: 10.1016/j.devcel.2016.03.012
    Li GM, Li YG, Yamate M, et al. Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle[J]. Microbes Infect, 2007, 9(1): 96−102. doi: 10.1016/j.micinf.2006.10.015
    Wang SX, Guo F, Liu KT, et al. Endocytosis of the receptor-binding domain of SARS-CoV spike protein together with virus receptor ACE2[J]. Virus Res, 2008, 136(1-2): 8−15. doi: 10.1016/j.virusres.2008.03.004
    Warner FJ, Lew RA, Smith AI, et al. Angiotensin-converting enzyme 2 (ACE2), but not ACE, is preferentially localized to the apical surface of polarized kidney cells[J]. J Biol Chem, 2005, 280(47): 39353−39362. doi: 10.1074/jbc.M508914200
    Lu YN, Liu DX, Tam JP. Lipid rafts are involved in SARS-CoV entry into Vero E6 cells[J]. Biochem Biophys Res Commun, 2008, 369(2): 344−349. doi: 10.1016/j.bbrc.2008.02.023
    Glende J, Schwegmann-Wessels C, Al-Falah M, et al. Importance of cholesterol-rich membrane microdomains in the interaction of the S protein of SARS-coronavirus with the cellular receptor angiotensin-converting enzyme 2[J]. Virology, 2008, 381(2): 215−221. doi: 10.1016/j.virol.2008.08.026
    Millet JK, Whittaker GR. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells[J]. Virology, 2018, 517: 3−8. doi: 10.1016/j.virol.2017.12.015
    Freeman MC, Peek CT, Becker MM, et al. Coronaviruses induce entry-independent, continuous macropinocytosis[J]. mBio, 2014, 5(4): e01340−14.
    Yang N, Ma P, Lang JS, et al. Phosphatidylinositol 4-kinase IIIβ is required for severe acute respiratory syndrome coronavirus spike-mediated cell entry[J]. J Biol Chem, 2012, 287(11): 8457−8467. doi: 10.1074/jbc.M111.312561
    Yu YTC, Chien SC, Chen IY, et al. Surface vimentin is critical for the cell entry of SARS-CoV[J]. J Biomed Sci, 2016, 23: 14. doi: 10.1186/s12929-016-0234-7
    Dyall J, Coleman CM, Hart BJ, et al. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection[J]. Antimicrob Agents Chemother, 2014, 58(8): 4885−4893. doi: 10.1128/AAC.03036-14
    Coleman CM, Sisk JM, Mingo RM, et al. Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and middle east respiratory syndrome coronavirus fusion[J]. J Virol, 2016, 90(19): 8924−8933. doi: 10.1128/JVI.01429-16
    Chen IY, Chang SC, Wu HY, et al. Upregulation of the chemokine (C-C motif) ligand 2 via a severe acute respiratory syndrome coronavirus spike-ACE2 signaling pathway[J]. J Virol, 2010, 84(15): 7703−7712. doi: 10.1128/JVI.02560-09
    Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181(2): 271−280.e8. doi: 10.1016/j.cell.2020.02.052
    Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro[J]. Cell Discov, 2020, 6: 16.
    Wang K, Chen W, Zhang Z, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells[J]. Signal Transduct Target Ther, 2020, 5(1): 283. doi: 10.1038/s41392-020-00426-x
    Rodon J, Noguera-Julian M, Erkizia I, et al. Search for SARS-CoV-2 inhibitors in currently approved drugs to tackle COVID-19 pandemia[J]. bioRxiv, 2020.
    Phonphok Y, Rosenthal KS. Stabilization of clathrin coated vesicles by amantadine, tromantadine and other hydrophobic amines[J]. FEBS Lett, 1991, 281(1-2): 188−190. doi: 10.1016/0014-5793(91)80390-O
    Bayati A, Kumar R, Francis V, et al. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis[J]. J Biol Chem, 2021, 296: 100306. doi: 10.1016/j.jbc.2021.100306
    Matsuyama S, Nao N, Shirato K, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells[J]. Proc Natl Acad Sci USA, 2020, 117(13): 7001−7003. doi: 10.1073/pnas.2002589117
    Shang J, Wan YS, Luo CM, et al. Cell entry mechanisms of SARS-CoV-2[J]. Proc Natl Acad Sci USA, 2020, 117(21): 11727−11734. doi: 10.1073/pnas.2003138117
    Bian HJ, Zheng ZH, Wei D, et al. Meplazumab treats COVID-19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial[EB/OL]. bioRxiv, 2020.
    Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement[J]. Stem Cell Rev Rep, 2020, 16(3): 434−440. doi: 10.1007/s12015-020-09976-7
    Amraei R, Yin WQ, Napoleon MA, et al. CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2 and are differentially expressed in lung and kidney epithelial and endothelial cells[EB/OL]. bioRxiv, 2020, doi: 10.1101/2020.06.22.165803.
    De Vries E, Tscherne DM, Wienholts MJ, et al. Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway[J]. PLoS Pathog, 2011, 7(3): e1001329. doi: 10.1371/journal.ppat.1001329
    Kälin S, Amstutz B, Gastaldelli M, et al. Macropinocytotic uptake and infection of human epithelial cells with species B2 adenovirus type 35[J]. J Virol, 2010, 84(10): 5336−5350. doi: 10.1128/JVI.02494-09
    Coutard B, Valle C, De Lamballerie X, et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade[J]. Antiviral Res, 2020, 176: 104742. doi: 10.1016/j.antiviral.2020.104742
    Braun E, Sauter D. Furin-mediated protein processing in infectious diseases and cancer[J]. Clin Transl Immunol, 2019, 8(8): e1073.
    Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2): 281−292.e6. doi: 10.1016/j.cell.2020.02.058
    Hoffmann M, Kleine-Weber H, Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells[J]. Mol Cell, 2020, 78(4): 779−784.e5. doi: 10.1016/j.molcel.2020.04.022
    Millet JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein[J]. Proc Natl Acad Sci USA, 2014, 111(42): 15214−15219. doi: 10.1073/pnas.1407087111
    Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity[J]. Science, 2020, 370(6518): 856−860. doi: 10.1126/science.abd2985
    Teesalu T, Sugahara KN, Kotamraju VR, et al. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration[J]. Proc Natl Acad Sci USA, 2009, 106(38): 16157−16162. doi: 10.1073/pnas.0908201106
    Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection[J]. Science, 2020, 370(6518): 861−865. doi: 10.1126/science.abd3072
    Moutal A, Martin LF, Boinon L, et al. SARS-CoV-2 Spike protein co-opts VEGF-A/Neuropilin-1 receptor signaling to induce analgesia[J]. PAIN, 2021, 162(1): 243−252. doi: 10.1097/j.pain.0000000000002097
    Pang HB, Braun GB, Friman T, et al. An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability[J]. Nat Commun, 2014, 5: 4904. doi: 10.1038/ncomms5904
    Palm W, Park Y, Wright K, et al. The utilization of extracellular proteins as nutrients is suppressed by mTORC1[J]. Cell, 2015, 162(2): 259−270. doi: 10.1016/j.cell.2015.06.017
    Tugizov SM, Herrera R, Palefsky JM. Epstein-Barr virus transcytosis through polarized oral epithelial cells[J]. J Virol, 2013, 87(14): 8179−8194. doi: 10.1128/JVI.00443-13
    Wang HB, Zhang H, Zhang JP, et al. Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells[J]. Nat Commun, 2015, 6: 6240. doi: 10.1038/ncomms7240
    Kang YL, Chou YY, Rothlauf PW, et al. Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2[J]. Proc Natl Acad Sci USA, 2020, 117(34): 20803−20813. doi: 10.1073/pnas.2007837117
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (30) PDF downloads(0) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint