Volume 5 Issue 1
Jun.  2021
Turn off MathJax
Article Contents
Andres Stucky, Li Gao, Lan Sun, Shengwen Calvin Li, Xuelian Chen, Tiffany H. Park, Jin Cai, Mustafa H. Kabeer, Xi Zhang, Uttam K. Sinha, Jiang F. Zhong. Evidence for AJUBA-catenin-CDH4-linked differentiation resistance of mesenchymal stem cells implies tumorigenesis and progression of head and neck squamous cell carcinoma: a single-cell transcriptome approach[J]. Blood&Genomics, 2021, 5(1): 29-39. doi: 10.46701/BG.2021012021106
Citation: Andres Stucky, Li Gao, Lan Sun, Shengwen Calvin Li, Xuelian Chen, Tiffany H. Park, Jin Cai, Mustafa H. Kabeer, Xi Zhang, Uttam K. Sinha, Jiang F. Zhong. Evidence for AJUBA-catenin-CDH4-linked differentiation resistance of mesenchymal stem cells implies tumorigenesis and progression of head and neck squamous cell carcinoma: a single-cell transcriptome approach[J]. Blood&Genomics, 2021, 5(1): 29-39. doi: 10.46701/BG.2021012021106

Evidence for AJUBA-catenin-CDH4-linked differentiation resistance of mesenchymal stem cells implies tumorigenesis and progression of head and neck squamous cell carcinoma: a single-cell transcriptome approach

doi: 10.46701/BG.2021012021106
More Information
  • Corresponding author: Shengwen Calvin Li, CHOC Children's Research Institute, Orange, CA 92868, USA. E-mail: shengwel@uci.edu; Jiang F. Zhong, Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. E-mail: jzhong@usc.edu
  • Received Date: 2021-02-26
  • Accepted Date: 2021-05-18
  • Rev Recd Date: 2021-04-25
  • Publish Date: 2021-06-01
  • An increasing number of reports indicate that mesenchymal stem cells (MSCs) play an essential role in promoting tumorigenesis and progression of head and neck squamous cell carcinoma (HNSCC). However, the molecular mechanisms underlying this process remain unclear. Using the MSC model system, this study analyzes the molecular pathway by which differentiation resistant MSCs promote HNSCC. MSCs were cultured in osteogenic differentiation media and harvested on days 12 and 19. Cells were stained for cell differentiation analysis using Alizarin Red. The osteogenesis-resistant MSCs (OR-MSCs) and MSC-differentiation-derived osteoblasts (D-OSTBs) were identified and subjected to the single-cell transcriptome analysis. Gene-specific analyses of these two sub-populations were performed for the patterns of differential expression. A total of 1780 differentially expressed genes were determined to distinguish OR-MSCs significantly from D-OSTB. Notably, AJUBA, β-catenin, and CDH4 expression levels were upregulated considerably within the OR-MSCs compared to D-OSTBs. To confirm their clinical relevance, a survey of a clinical cohort revealed a high correlation among the expression levels of AJUBA, β-catenin and CDH4. The results shed new light that OR-MSCs participate in the development of HNSCC via a pathway mediated by AJUBA, β-catenin, CDH4, and CTNNB1, thereby implying that MSC-based therapy is a promising therapeutic approach in the management of HNSCC.

     

  • loading
  • [1]
    Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer[J]. Oral Oncol, 2009, 45(4-5): 309−316. doi: 10.1016/j.oraloncology.2008.06.002
    [2]
    Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394−424. doi: 10.3322/caac.21492
    [3]
    Vigneswaran N, Williams MD. Epidemiologic trends in head and neck cancer and aids in diagnosis[J]. Oral Maxillofac Surg Clin North Am, 2014, 26(2): 123−141. doi: 10.1016/j.coms.2014.01.001
    [4]
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7−34. doi: 10.3322/caac.21551
    [5]
    Buduru SD, Gulei D, Zimta AA, et al. The potential of different origin stem cells in modulating oral bone regeneration processes[J]. Cells, 2019, 8(1): 29. doi: 10.3390/cells8010029
    [6]
    He XH, Li BS, Shao Y, et al. Cell fusion between gastric epithelial cells and mesenchymal stem cells results in epithelial-to-mesenchymal transition and malignant transformation[J]. BMC Cancer, 2015, 15: 24. doi: 10.1186/s12885-015-1027-1
    [7]
    Huang QK, Pu M, Zhao G, et al. Tg737 regulates epithelial-mesenchymal transition and cancer stem cell properties via a negative feedback circuit between Snail and HNF4α during liver stem cell malignant transformation[J]. Cancer Lett, 2017, 402: 52−60. doi: 10.1016/j.canlet.2017.05.005
    [8]
    Caplan AI. Mesenchymal stem cells[J]. J Orthop Res, 1991, 9(5): 641−650. doi: 10.1002/jor.1100090504
    [9]
    Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143−147. doi: 10.1126/science.284.5411.143
    [10]
    Gambera S, Abarrategi A, Rodríguez-Milla MA, et al. Role of activator protein-1 complex on the phenotype of human osteosarcomas generated from mesenchymal stem cells[J]. Stem Cells, 2018, 36(10): 1487−1500. doi: 10.1002/stem.2869
    [11]
    Rossnagl S, Ghura H, Groth C, et al. A subpopulation of stromal cells controls cancer cell homing to the bone marrow[J]. Cancer Res, 2018, 78(1): 129−142. doi: 10.1158/0008-5472.CAN-16-3507
    [12]
    Li SC, Lee KL, Luo J, et al. Convergence of normal stem cell and cancer stem cell developmental stage: Implication for differential therapies[J]. World J Stem Cells, 2011, 3(9): 83−88. doi: 10.4252/wjsc.v3.i9.83
    [13]
    Martínez-Delgado P, Lacerenza S, Obrador-Hevia A, et al. Cancer stem cells in soft-tissue sarcomas[J]. Cells, 2020, 9(6): 1449. doi: 10.3390/cells9061449
    [14]
    Park JW, Lee JK, Sheu KM, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage[J]. Science, 2018, 362(6410): 91−95. doi: 10.1126/science.aat5749
    [15]
    Li ZJ, Zhang C, Weiner LP, et al. Molecular characterization of heterogeneous mesenchymal stem cells with single-cell transcriptomes[J]. Biotechnol Adv, 2013, 31(2): 312−317. doi: 10.1016/j.biotechadv.2012.12.003
    [16]
    Chen XL, Wen Q, Stucky A, et al. Relapse pathway of glioblastoma revealed by single-cell molecular analysis[J]. Carcinogenesis, 2018, 39(7): 931−936. doi: 10.1093/carcin/bgy052
    [17]
    Li SC, Stucky A, Chen XL, et al. Single-cell transcriptomes reveal the mechanism for a breast cancer prognostic gene panel[J]. Oncotarget, 2018, 9(70): 33290−33301. doi: 10.18632/oncotarget.26044
    [18]
    Zhang BS, Song LW, Cai JL, et al. The LIM protein Ajuba/SP1 complex forms a feed forward loop to induce SP1 target genes and promote pancreatic cancer cell proliferation[J]. J Exp Clin Cancer Res, 2019, 38(1): 205. doi: 10.1186/s13046-019-1203-2
    [19]
    Zhang M, Singh R, Peng S, et al. Mutations of the LIM protein AJUBA mediate sensitivity of head and neck squamous cell carcinoma to treatment with cell-cycle inhibitors[J]. Cancer Lett, 2017, 392: 71−82. doi: 10.1016/j.canlet.2017.01.024
    [20]
    The Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas[J]. Nature, 2015, 517(7536): 576−582. doi: 10.1038/nature14129
    [21]
    Zhang C, Wei S, Sun WP, et al. Super-enhancer-driven AJUBA is activated by TCF4 and involved in epithelial-mesenchymal transition in the progression of Hepatocellular Carcinoma[J]. Theranostics, 2020, 10(20): 9066−9082. doi: 10.7150/thno.45349
    [22]
    Liang XH, Zhang GX, Zeng YB, et al. LIM protein JUB promotes epithelial-mesenchymal transition in colorectal cancer[J]. Cancer Sci, 2014, 105(6): 660−666. doi: 10.1111/cas.12404
    [23]
    Liu M, Jiang K, Lin GB, et al. Ajuba inhibits hepatocellular carcinoma cell growth via targeting of β-catenin and YAP signaling and is regulated by E3 ligase Hakai through neddylation[J]. J Exp Clin Cancer Res, 2018, 37(1): 165. doi: 10.1186/s13046-018-0806-3
    [24]
    Haraguchi K, Ohsugi M, Abe Y, et al. Ajuba negatively regulates the Wnt signaling pathway by promoting GSK-3β-mediated phosphorylation of β-catenin[J]. Oncogene, 2008, 27(3): 274−284. doi: 10.1038/sj.onc.1210644
    [25]
    Yang F, Zeng QH, Yu GY, et al. Wnt/β-catenin signaling inhibits death receptor-mediated apoptosis and promotes invasive growth of HNSCC[J]. Cell Signal, 2006, 18(5): 679−687. doi: 10.1016/j.cellsig.2005.06.015
    [26]
    Kartha VK, Alamoud KA, Sadykov K, et al. Functional and genomic analyses reveal therapeutic potential of targeting β-catenin/CBP activity in head and neck cancer[J]. Genome Med, 2018, 10(1): 54. doi: 10.1186/s13073-018-0569-7
    [27]
    Javed Z, Farooq HM, Ullah M, et al. Wnt signaling: a potential therapeutic target in head and neck squamous cell carcinoma[J]. Asian Pac J Cancer Prev, 2019, 20(4): 995−1003. doi: 10.31557/APJCP.2019.20.4.995
    [28]
    Krüger M, Amort J, Wilgenbus P, et al. The anti-apoptotic PON2 protein is Wnt/β-catenin-regulated and correlates with radiotherapy resistance in OSCC patients[J]. Oncotarget, 2016, 7(32): 51082−51095. doi: 10.18632/oncotarget.9013
    [29]
    Li L, Liu HC, Wang C, et al. Overexpression of β-catenin induces cisplatin resistance in oral squamous cell carcinoma[J]. BioMed Res Int, 2016, 2016: 5378567. doi: 10.1155/2016/5378567
    [30]
    Lee GA, Hwang KA, Choi KC. Roles of dietary phytoestrogens on the regulation of epithelial-mesenchymal transition in diverse cancer metastasis[J]. Toxins, 2016, 8(6): 162. doi: 10.3390/toxins8060162
    [31]
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114−2120. doi: 10.1093/bioinformatics/btu170
    [32]
    Church DM, Schneider VA, Graves T, et al. Modernizing reference genome assemblies[J]. PLoS Biol, 2011, 9(7): e1001091. doi: 10.1371/journal.pbio.1001091
    [33]
    Cerami E, Gao JJ, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data[J]. Cancer Discov, 2012, 2(5): 401−404. doi: 10.1158/2159-8290.CD-12-0095
    [34]
    Gao JJ, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal[J]. Sci Signal, 2013, 6(269): pl1. doi: 10.1126/scisignal.2004088
    [35]
    Rhodes DR, Yu JJ, Shanker K, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform[J]. Neoplasia, 2004, 6(1): 1−6. doi: 10.1016/S1476-5586(04)80047-2
    [36]
    Chen Y, Millstein J, Liu Y, et al. Single-cell digital lysates generated by phase-switch microfluidic device reveal transcriptome perturbation of cell cycle[J]. ACS Nano, 2018, 12(5): 4687−4694. doi: 10.1021/acsnano.8b01272
    [37]
    Pyeon D, Newton MA, Lambert PF, et al. Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers[J]. Cancer Res, 2007, 67(10): 4605−4619. doi: 10.1158/0008-5472.CAN-06-3619
    [38]
    Sengupta S, den Boon JA, Chen IH, et al. Genome-wide expression profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma[J]. Cancer Res, 2006, 66(16): 7999−8006. doi: 10.1158/0008-5472.CAN-05-4399
    [39]
    Rickman DS, Millon R, de Reynies A, et al. Prediction of future metastasis and molecular characterization of head and neck squamous-cell carcinoma based on transcriptome and genome analysis by microarrays[J]. Oncogene, 2008, 27(51): 6607−6622. doi: 10.1038/onc.2008.251
    [40]
    Ye H, Yu TW, Temam S, et al. Transcriptomic dissection of tongue squamous cell carcinoma[J]. BMC Genomics, 2008, 9: 69. doi: 10.1186/1471-2164-9-69
    [41]
    Peng CH, Liao CT, Peng SC, et al. A novel molecular signature identified by systems genetics approach predicts prognosis in oral squamous cell carcinoma[J]. PLoS One, 2011, 6(8): e23452. doi: 10.1371/journal.pone.0023452
    [42]
    Guo W, Zhang HP, Yang AM, et al. Homocysteine accelerates atherosclerosis by inhibiting scavenger receptor class B member1 via DNMT3b/SP1 pathway[J]. J Mol Cell Cardiol, 2019, 138: 34−48. doi: 10.1016/j.yjmcc.2019.11.145
    [43]
    Jones-Villeneuve EM, McBurney MW, Rogers KA, et al. Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells[J]. J Cell Biol, 1982, 94(2): 253−262. doi: 10.1083/jcb.94.2.253
    [44]
    Kaiser S, Park YK, Franklin JL, et al. Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer[J]. Genome Biol, 2007, 8(7): R131. doi: 10.1186/gb-2007-8-7-r131
    [45]
    Skrzypczak M, Goryca K, Rubel T, et al. Modeling oncogenic signaling in colon tumors by multidirectional analyses of microarray data directed for maximization of analytical reliability[J]. PLoS One, 2010, 5(10): e13091. doi: 10.1371/journal.pone.0013091
    [46]
    Gaedcke J, Grade M, Jung K, et al. Mutated KRAS results in overexpression of DUSP4, a MAP-kinase phosphatase, and SMYD3, a histone methyltransferase, in rectal carcinomas[J]. Genes Chromosomes Cancer, 2010, 49(11): 1024−1034. doi: 10.1002/gcc.20811
    [47]
    D'Errico M, de Rinaldis E, Blasi MF, et al. Genome-wide expression profile of sporadic gastric cancers with microsatellite instability[J]. Eur J Cancer, 2009, 45(3): 461−469. doi: 10.1016/j.ejca.2008.10.032
    [48]
    Hong Y, Downey T, Eu KW, et al. A 'metastasis-prone' signature for early-stage mismatch-repair proficient sporadic colorectal cancer patients and its implications for possible therapeutics[J]. Clin Exp Metastasis, 2010, 27(2): 83−90. doi: 10.1007/s10585-010-9305-4
    [49]
    Su H, Hu N, Yang HH, et al. Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes[J]. Clin Cancer Res, 2011, 17(9): 2955−2966. doi: 10.1158/1078-0432.CCR-10-2724
    [50]
    Liang Y, Diehn M, Watson N, et al. Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme[J]. Proc Natl Acad Sci USA, 2005, 102(16): 5814−5819. doi: 10.1073/pnas.0402870102
    [51]
    Freije WA, Castro-Vargas FE, Fang ZX, et al. Gene expression profiling of gliomas strongly predicts survival[J]. Cancer Res, 2004, 64(18): 6503−6510. doi: 10.1158/0008-5472.CAN-04-0452
    [52]
    Umbas R, Schalken JA, Aalders TW, et al. Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer[J]. Cancer Res, 1992, 52(18): 5104−5109.
    [53]
    Cheng L, Nagabhushan M, Pretlow TP, et al. Expression of E-cadherin in primary and metastatic prostate cancer[J]. Am J Pathol, 1996, 148(5): 1375−1380.
    [54]
    Derycke LD, Bracke ME. N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling[J]. Int J Dev Biol, 2004, 48(5-6): 463−476. doi: 10.1387/ijdb.041793ld
    [55]
    Lin Y, Ge XX, Zhang XF, et al. Protocadherin-8 promotes invasion and metastasis via laminin subunit γ2 in gastric cancer[J]. Cancer Sci, 2018, 109(3): 732−740. doi: 10.1111/cas.13502
    [56]
    Seo E, Basu-Roy U, Gunaratne PH, et al. SOX2 regulates YAP1 to maintain stemness and determine cell fate in the osteo-adipo lineage[J]. Cell Rep, 2013, 3(6): 2075−2087. doi: 10.1016/j.celrep.2013.05.029
    [57]
    Basu-Roy U, Seo E, Ramanathapuram L, et al. Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas[J]. Oncogene, 2012, 31(18): 2270−2282. doi: 10.1038/onc.2011.405
    [58]
    Park SB, Seo KW, So AY, et al. SOX2 has a crucial role in the lineage determination and proliferation of mesenchymal stem cells through Dickkopf-1 and c-MYC[J]. Cell Death Differ, 2012, 19(3): 534−545. doi: 10.1038/cdd.2011.137
    [59]
    Mansukhani A, Ambrosetti D, Holmes G, et al. Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation[J]. J Cell Biol, 2005, 168(7): 1065−1076. doi: 10.1083/jcb.200409182
    [60]
    Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6): 985−999. doi: 10.1016/j.cell.2017.05.016
    [61]
    Atlasi Y, Noori R, Gaspar C, et al. Wnt signaling regulates the lineage differentiation potential of mouse embryonic stem cells through Tcf3 down-regulation[J]. PLoS Genet, 2013, 9(5): e1003424. doi: 10.1371/journal.pgen.1003424
    [62]
    Acebron SP, Karaulanov E, Berger BS, et al. Mitotic wnt signaling promotes protein stabilization and regulates cell size[J]. Mol Cell, 2014, 54(4): 663−674. doi: 10.1016/j.molcel.2014.04.014
    [63]
    Clevers H, Loh KM, Nusse R. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control[J]. Science, 2014, 346(6205): 1248012. doi: 10.1126/science.1248012
    [64]
    Green JL, Inoue T, Sternberg PW. Opposing Wnt pathways orient cell polarity during organogenesis[J]. Cell, 2008, 134(4): 646−656. doi: 10.1016/j.cell.2008.06.026
    [65]
    Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer[J]. Oncogene, 2017, 36(11): 1461−1473. doi: 10.1038/onc.2016.304
    [66]
    Clevers H. Wnt/β-catenin signaling in development and disease[J]. Cell, 2006, 127(3): 469−480. doi: 10.1016/j.cell.2006.10.018
    [67]
    Iwai S, Katagiri W, Kong C, et al. Mutations of the APC, beta-catenin, and axin 1 genes and cytoplasmic accumulation of beta-catenin in oral squamous cell carcinoma[J]. J Cancer Res Clin Oncol, 2005, 131(12): 773−782. doi: 10.1007/s00432-005-0027-y
    [68]
    González-Moles MA, Ruiz-Ávila I, Gil-Montoya JA, et al. β-catenin in oral cancer: an update on current knowledge[J]. Oral Oncol, 2014, 50(9): 818−824. doi: 10.1016/j.oraloncology.2014.06.005
    [69]
    Beck TN, Golemis EA. Genomic insights into head and neck cancer[J]. Cancers Head Neck, 2016, 1: 1. doi: 10.1186/s41199-016-0003-z
    [70]
    Padhi S, Saha A, Kar M, et al. Clinico-pathological correlation of β-catenin and telomere dysfunction in head and neck squamous cell carcinoma patients[J]. J Cancer, 2015, 6(2): 192−202. doi: 10.7150/jca.9558
    [71]
    Alégot H, Markosian C, Rauskolb C, et al. Recruitment of Jub by α-catenin promotes Yki activity and Drosophila wing growth[J]. J Cell Sci, 2019, 132(5): jcs222018. doi: 10.1242/jcs.222018
    [72]
    Shi XJ, Chen ZL, Hu XD, et al. AJUBA promotes the migration and invasion of esophageal squamous cell carcinoma cells through upregulation of MMP10 and MMP13 expression[J]. Oncotarget, 2016, 7(24): 36407−36418. doi: 10.18632/oncotarget.9239
    [73]
    Dommann N, Sánchez-Taltavull D, Eggs L, et al. The LIM protein ajuba augments tumor metastasis in colon cancer[J]. Cancers, 2020, 12(7): 1913. doi: 10.3390/cancers12071913
    [74]
    Pickering CR, Zhou JH, Lee JJ, et al. Mutational landscape of aggressive cutaneous squamous cell carcinoma[J]. Clin Cancer Res, 2014, 20(24): 6582−6592. doi: 10.1158/1078-0432.CCR-14-1768
  • 2021106supplementary.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (62) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return