Volume 5 Issue 1
Jun.  2021
Turn off MathJax
Article Contents
Zhiruo Song, Yufeng Zhang, Yuanjie Zhu, Mingming Zhang, Xinjian Liu, Minjun Ji. Screening of tumor-targeting peptides for diagnosis and therapy through phage display technology[J]. Blood&Genomics, 2021, 5(1): 13-20. doi: 10.46701/BG.2021012021103
Citation: Zhiruo Song, Yufeng Zhang, Yuanjie Zhu, Mingming Zhang, Xinjian Liu, Minjun Ji. Screening of tumor-targeting peptides for diagnosis and therapy through phage display technology[J]. Blood&Genomics, 2021, 5(1): 13-20. doi: 10.46701/BG.2021012021103

Screening of tumor-targeting peptides for diagnosis and therapy through phage display technology

doi: 10.46701/BG.2021012021103
More Information
  • Corresponding author: Xinjian Liu, Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China. E-mail: liuxinjian@njmu.edu.cn
  • Received Date: 2021-02-02
  • Accepted Date: 2021-04-15
  • Rev Recd Date: 2021-03-24
  • Publish Date: 2021-06-01
  • Phage display technology was introduced by G. Smith in 1985, which is highly effective in the selection of affinity peptides from a library containing billions of display peptides. The obtained peptides show potential efficacy in the development of further clinical applications, especially in tumor treatment. In this review, the basic principles, limits, developments of phage display technology and peptide libraries are introduced. Following that, the amino acid sequence of tumor target peptides for hematological and other systems are discussed. Finally, the application of target peptides in the design of imaging probes and the development of target peptide drugs for diagnosis and therapy are noted.

     

  • loading
  • [1]
    Sable R, Parajuli P, Jois S. Peptides, peptidomimetics, and polypeptides from marine sources: a wealth of natural sources for pharmaceutical applications[J]. Mar Drugs, 2017, 15(4): 124. doi: 10.3390/md15040124
    [2]
    Hyvönen M, Laakkonen P. Identification and characterization of homing peptides using in vivo peptide phage display[M]//Langel Ü. Cell-Penetrating Peptides: Methods and Protocols. New York: Humana Press, 2015, 1324: 205−222.
    [3]
    Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface[J]. Science, 1985, 228(4705): 1315−1317. doi: 10.1126/science.4001944
    [4]
    Smith GP. Surface presentation of protein epitopes using bacteriophage expression systems[J]. Curr Opin Biotechnol, 1991, 2(5): 668−673. doi: 10.1016/0958-1669(91)90032-Z
    [5]
    Smith GP, Scott JK. Libraries of peptides and proteins displayed on filamentous phage[J]. Methods Enzymol, 1993, 217: 228−257. doi: 10.1016/0076-6879(93)17065-D
    [6]
    McCafferty J, Griffiths AD, Winter G, et al. Phage antibodies: filamentous phage displaying antibody variable domains[J]. Nature, 1990, 348(6301): 552−554. doi: 10.1038/348552a0
    [7]
    Tan YY, Tian T, Liu WL, et al. Advance in phage display technology for bioanalysis[J]. Biotechnol J, 2016, 11(6): 732−745. doi: 10.1002/biot.201500458
    [8]
    Smeal SW, Schmitt MA, Pereira RR, et al. Simulation of the M13 life cycle I: assembly of a genetically-structured deterministic chemical kinetic simulation[J]. Virology, 2017, 500: 259−274. doi: 10.1016/j.virol.2016.08.017
    [9]
    Omidfar K, Daneshpour M. Advances in phage display technology for drug discovery[J]. Expert Opin Drug Discov, 2015, 10(6): 651−669. doi: 10.1517/17460441.2015.1037738
    [10]
    Newman MR, Benoit DSW. In vivo translation of peptide-targeted drug delivery systems discovered by phage display[J]. Bioconjug Chem, 2018, 29(7): 2161−2169. doi: 10.1021/acs.bioconjchem.8b00285
    [11]
    Kemp P, Garcia LR, Molineux IJ. Changes in bacteriophage T7 virion structure at the initiation of infection[J]. Virology, 2005, 340(2): 307−317. doi: 10.1016/j.virol.2005.06.039
    [12]
    Zhang D, Jia H, Wang Y, et al. A CD44 specific peptide developed by phage display for targeting gastric cancer[J]. Biotechnol Lett, 2015, 37(11): 2311−2320. doi: 10.1007/s10529-015-1896-z
    [13]
    Gao XJ, Ran N, Dong X, et al. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy[J]. Sci Transl Med, 2018, 10(444): eaat0195. doi: 10.1126/scitranslmed.aat0195
    [14]
    Wu CH, Liu IJ, Lu RM, et al. Advancement and applications of peptide phage display technology in biomedical science[J]. J Biomed Sci, 2016, 23: 8. doi: 10.1186/s12929-016-0223-x
    [15]
    Saw PE, Song EW. Phage display screening of therapeutic peptide for cancer targeting and therapy[J]. Protein Cell, 2019, 10(11): 787−807. doi: 10.1007/s13238-019-0639-7
    [16]
    Pasqualini R, Ruoslahti E. Organ targeting In vivo using phage display peptide libraries[J]. Nature, 1996, 380(6572): 364−366. doi: 10.1038/380364a0
    [17]
    Liu XM, Peng JW, He J, et al. Selection and Identification of novel peptides specifically targeting human cervical cancer[J]. Amino Acids, 2018, 50(5): 577−592. doi: 10.1007/s00726-018-2539-1
    [18]
    Bakhshinejad B, Zade HM, Shekarabi HSZ, et al. Phage display biopanning and isolation of target-unrelated peptides: in search of nonspecific binders hidden in a combinatorial library[J]. Amino Acids, 2016, 48(12): 2699−2716. doi: 10.1007/s00726-016-2329-6
    [19]
    Bakhshinejad B, Sadeghizadeh M. A polystyrene binding target-unrelated peptide isolated in the screening of phage display library[J]. Anal Biochem, 2016, 512: 120−128. doi: 10.1016/j.ab.2016.08.013
    [20]
    Zade HM, Keshavarz R, Shekarabi HSZ, et al. Biased selection of propagation-related TUPs from phage display peptide libraries[J]. Amino Acids, 2017, 49(8): 1293−1308. doi: 10.1007/s00726-017-2452-z
    [21]
    He BF, Chen H, Li N, et al. SAROTUP: a suite of tools for finding potential target-unrelated peptides from phage display data[J]. Int J Biol Sci, 2019, 15(7): 1452−1459. doi: 10.7150/ijbs.31957
    [22]
    Yun S, Lee S, Park JP, et al. Modification of phage display technique for improved screening of high-affinity binding peptides[J]. J Biotechnol, 2019, 289: 88−92. doi: 10.1016/j.jbiotec.2018.11.020
    [23]
    Deyle K, Kong XD, Heinis C. Phage selection of cyclic peptides for application in research and drug development[J]. Acc Chem Res, 2017, 50(8): 1866−1874. doi: 10.1021/acs.accounts.7b00184
    [24]
    Wang XS, Chen PHC, Hampton JT, et al. A genetically encoded, phage-displayed cyclic-peptide library[J]. Angew Chem Int Ed, 2019, 58(44): 15904−15909. doi: 10.1002/anie.201908713
    [25]
    Ahmadi A, Ayyadevara VSSA, Baudry J, et al. Calcium signaling on jurkat T cells induced by microbeads coated with novel peptide ligands specific to human CD3ε[J]. J Mater Chem B, 2021, 9(6): 1661−1675. doi: 10.1039/D0TB02235G
    [26]
    Alcover A, Alarcón B, Di Bartolo V. Cell biology of T cell receptor expression and regulation[J]. Annu Rev Immunol, 2018, 36: 103−125. doi: 10.1146/annurev-immunol-042617-053429
    [27]
    Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017[J]. CA: Cancer J Clin, 2017, 67(3): 177−193. doi: 10.3322/caac.21395
    [28]
    Choi Y, Sateia HF, Peairs KS, et al. Screening for colorectal cancer[J]. Semin Oncol, 2017, 44(1): 34−44. doi: 10.1053/j.seminoncol.2017.02.002
    [29]
    Hou LD, Zhu DX, Liang Y, et al. Identification of a specific peptide binding to colon cancer cells from a phage-displayed peptide library[J]. Br J Cancer, 2018, 118(1): 79−87. doi: 10.1038/bjc.2017.366
    [30]
    Ferreira D, Silva AP, Nobrega FL, et al. Rational identification of a colorectal cancer targeting peptide through phage display[J]. Sci Rep, 2019, 9(1): 3958. doi: 10.1038/s41598-019-40562-1
    [31]
    Wu CH, Kuo YH, Hong RL, et al. α-enolase-binding peptide enhances drug delivery efficiency and therapeutic efficacy against colorectal cancer[J]. Sci Transl Med, 2015, 7(290): 290ra91. doi: 10.1126/scitranslmed.aaa9391
    [32]
    Sahin D, Taflan SO, Yartas G, et al. Screening and identification of peptides specifically targeted to gastric cancer cells from a phage display peptide library[J]. Asian Pac J Cancer Prev, 2018, 19(4): 927−932. doi: 10.22034/APJCP.2018.19.4.927
    [33]
    Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: Cancer J Clin, 2018, 68(6): 394−424. doi: 10.3322/caac.21492
    [34]
    Liu F, Qi CL, Kong M, et al. Screening specific polypeptides of breast cancer stem cells from a phage display random peptide library[J]. Oncol Lett, 2016, 12(6): 4727−4731. doi: 10.3892/ol.2016.5248
    [35]
    Qu XW, Qiu PH, Zhu Y, et al. Guiding nanomaterials to tumors for breast cancer precision medicine: from tumor-targeting small-molecule discovery to targeted nanodrug delivery[J]. NPG Asia Mater, 2017, 9: e452. doi: 10.1038/am.2017.196
    [36]
    Liu XJ, Song JW, Zhang YN, et al. ASF1B promotes cervical cancer progression through stabilization of CDK9[J]. Cell Death Dis, 2020, 11(8): 705. doi: 10.1038/s41419-020-02872-5
    [37]
    Koller M, Qiu SQ, Linssen MD, et al. Implementation and benchmarking of a novel analytical framework to clinically evaluate tumor-specific fluorescent tracers[J]. Nat Commun, 2018, 9(1): 3739. doi: 10.1038/s41467-018-05727-y
    [38]
    de Vries EGE, de Ruijter LK, Lub-de Hooge MN, et al. Integrating molecular nuclear imaging in clinical research to improve anticancer therapy[J]. Nat Rev Clin Oncol, 2019, 16(4): 241−255. doi: 10.1038/s41571-018-0123-y
    [39]
    Peng L, Shang WT, Guo PY, et al. Phage display-derived peptide-based dual-modality imaging probe for bladder cancer diagnosis and resection postinstillation: a preclinical study[J]. Mol Cancer Ther, 2018, 17(10): 2100−2111. doi: 10.1158/1535-7163.MCT-18-0212
    [40]
    Salvatore B, Caprio MG, Hill BS, et al. Recent advances in nuclear imaging of receptor expression to guide targeted therapies in breast cancer[J]. Cancers, 2019, 11(10): 1614. doi: 10.3390/cancers11101614
    [41]
    Haque ME, Khan F, Chi LH, et al. A phage display-identified peptide selectively binds to kidney injury molecule-1 (KIM-1) and detects KIM-1-overexpressing tumors in vivo[J]. Cancer Res Treat, 2019, 51(3): 861−875. doi: 10.4143/crt.2018.214
    [42]
    Drevs J, Schneider V. The use of vascular biomarkers and imaging studies in the early clinical development of anti-tumour agents targeting angiogenesis[J]. J Intern Med, 2006, 260(6): 517−529. doi: 10.1111/j.1365-2796.2006.01727.x
    [43]
    Lui BG, Salomon N, Wüstehube-Lausch J, et al. Targeting the tumor vasculature with engineered cystine-knot miniproteins[J]. Nat Commun, 2020, 11(1): 295. doi: 10.1038/s41467-019-13948-y
    [44]
    Razazan A, Nicastro J, Slavcev R, et al. Lambda bacteriophage nanoparticles displaying GP2, a HER2/Neu derived peptide, induce prophylactic and therapeutic activities against TUBO tumor model in mice[J]. Sci Rep, 2019, 9(1): 2221. doi: 10.1038/s41598-018-38371-z
    [45]
    Yan YM, Zuo XS, Wei DY. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target[J]. Stem Cells Transl Med, 2015, 4(9): 1033−1043. doi: 10.5966/sctm.2015-0048
    [46]
    Chen C, Zhao SJ, Karnad A, et al. The biology and role of CD44 in cancer progression: therapeutic implications[J]. J Hematol Oncol, 2018, 11(1): 64. doi: 10.1186/s13045-018-0605-5
    [47]
    Kavousipour S, Mokarram P, Gargari SLM, et al. A comparison between cell, protein and peptide-based approaches for selection of nanobodies against CD44 from a synthetic library[J]. Protein Pept Lett, 2018, 25(6): 580−588. doi: 10.2174/0929866525666180530122159
    [48]
    Li WM, Jia H, Wang JC, et al. A CD44-specific peptide, RP-1, exhibits capacities of assisting diagnosis and predicting prognosis of gastric cancer[J]. Oncotarget, 2017, 8(18): 30063−30076. doi: 10.18632/oncotarget.16275
    [49]
    Van Acker HH, Capsomidis A, Smits EL, et al. CD56 in the immune system: more than a marker for cytotoxicity?[J]. Front Immunol, 2017, 8: 892. doi: 10.3389/fimmu.2017.00892
    [50]
    Huang HX, Liu Y, Ouyang XM, et al. Identification of a peptide targeting CD56[J]. Immunobiology, 2020, 225(4): 151982. doi: 10.1016/j.imbio.2020.151982
    [51]
    Katoh M. Therapeutics targeting FGF signaling network in human diseases[J]. Trends Pharmacol Sci, 2016, 37(12): 1081−1096. doi: 10.1016/j.tips.2016.10.003
    [52]
    Clayton NS, Wilson AS, Laurent EP, et al. Fibroblast growth factor-mediated crosstalk in cancer etiology and treatment[J]. Dev Dyn, 2017, 246(7): 493−501. doi: 10.1002/dvdy.24514
    [53]
    Wang W, Chen T, Li HC, et al. Screening a novel FGF3 antagonist peptide with anti-tumor effects on breast cancer from a phage display library[J]. Mol Med Rep, 2015, 12(5): 7051−7058. doi: 10.3892/mmr.2015.4248
    [54]
    Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy[J]. Nat Rev Drug Discov, 2016, 15(6): 385−403. doi: 10.1038/nrd.2015.17
    [55]
    Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development[J]. Cell, 2019, 176(6): 1248−1264. doi: 10.1016/j.cell.2019.01.021
    [56]
    Zuo SG, Dai GP, Wang LP, et al. Suppression of angiogenesis and tumor growth by recombinant T4 phages displaying extracellular domain of vascular endothelial growth factor receptor 2[J]. Arch Virol, 2019, 164(1): 69−82. doi: 10.1007/s00705-018-4026-0
    [57]
    Zhang Y, He BF, Liu K, et al. A novel peptide specifically binding to VEGF receptor suppresses angiogenesis in vitro and in vivo[J]. Signal Transduct Target Ther, 2017, 2: 17010. doi: 10.1038/sigtrans.2017.10
    [58]
    Arifin SA, Falasca M. Lysophosphatidylinositol signalling and metabolic diseases[J]. Metabolites, 2016, 6(1): 6. doi: 10.3390/metabo6010006
    [59]
    Kargl J, Andersen L, Hasenöhrl C, et al. GPR55 promotes migration and adhesion of colon cancer cells indicating a role in metastasis[J]. Br J Pharmacol, 2016, 173(1): 142−154. doi: 10.1111/bph.13345
    [60]
    Ferro R, Adamska A, Lattanzio R, et al. GPR55 signalling promotes proliferation of pancreatic cancer cells and tumour growth in mice, and its inhibition increases effects of gemcitabine[J]. Oncogene, 2018, 37(49): 6368−6382. doi: 10.1038/s41388-018-0390-1
    [61]
    Zhou XL, Guo X, Song YP, et al. The LPI/GPR55 axis enhances human breast cancer cell migration via HBXIP and p-MLC signaling[J]. Acta Pharmacol Sin, 2018, 39(3): 459−471. doi: 10.1038/aps.2017.157
    [62]
    Sohrabi C, Foster A, Tavassoli A. Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery[J]. Nat Rev Chem, 2020, 4: 90−101. doi: 10.1038/s41570-019-0159-2
    [63]
    Mangini M, Iaccino E, Mosca MG, et al. Peptide-guided targeting of GPR55 for anti-cancer therapy[J]. Oncotarget, 2017, 8(3): 5179−5195. doi: 10.18632/oncotarget.14121
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (40) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return