Volume 4 Issue 2
Dec.  2020
Turn off MathJax
Article Contents
Hongjun Gao, Gradimir Misevic. Microchip technology applications for blood group analysis[J]. Blood&Genomics, 2020, 4(2): 83-95. doi: 10.46701/BG.2020022020109
Citation: Hongjun Gao, Gradimir Misevic. Microchip technology applications for blood group analysis[J]. Blood&Genomics, 2020, 4(2): 83-95. doi: 10.46701/BG.2020022020109

Microchip technology applications for blood group analysis

doi: 10.46701/BG.2020022020109
More Information
  • Corresponding author: Hongjun Gao, Ph.D, Jiangsu LIBO Medicine Biotechnology Co., Ltd. 78 Dong Sheng West Road, Jiangyin, Jiangsu 214400, China. Tel: +86-13538270675. E-mail: gaochemistry@hotmail.com
  • Received Date: 2020-05-09
  • Accepted Date: 2020-07-31
  • Rev Recd Date: 2020-06-28
  • Available Online: 2021-07-01
  • Publish Date: 2020-12-30
  • Blood group analysis techniques are some of the most in demand immunological applications in clinical transfusion praxis and organ transplantation. In order to aid the advance towards higher throughput and increased sensitivity, analytical solutions dealing with a minimal amount of blood samples and the miniaturization of diagnostic equipment using microchip technologies have been evolving into an optimal solution. Here we review fabrication technologies for various types of microstructure on microchips, related operating procedures, and characterization approaches. Our focus is on examples of microchip technology and instrumentation used for blood group analysis ranging from classical serological methods of glycoprotein detection and solid phase assays, to nucleic acid amplification techniques. Molecular typing using microchip-based techniques is emerging as a supplement to standard serological methods. Microchip technology will play its key role to support blood group analysis at the molecular scale by using microliters of blood samples for extremely sensitive, quantitative, and high throughput analyses.


  • Abbreviations: POC, Point-of-Care; ISBT, the International Society of Blood Transfusion; RBCs, red blood cells; HDN, hemolytic disease of the newborn; MMT, microplate monolayer technique; NGS, next-generation sequencing; SERS, surface-enhanced Raman scattering; QCM, quartz crystal microbalance; µPAD, microfluidic paper-based analytical device; PDMS, polydimethylsiloxane; PEO, polyethylene oxide; PMMA, polymethyl methacrylate; PEGMA, polyethylene glycol methacrylate; MCM, microplate coagglutination method; MAM, microplate agglutination method; SPAM, solid-phase adherence method; SPRCA, solid-phase red cell adherence; MIT, molecular imprinting technology; MIPs, molecularly imprinted polymers; SPR, surface plasmon resonance; SPRi, surface plasmon resonance imaging; UV-vis, ultraviolet-visible; GNPs, gold nanoprisms; SNPs, single nucleotide polymorphisms; NAT, nucleic acid amplification techniques; PCR, polymerase chain reaction; LR-PCR, long-range polymerase chain reaction; Rh, Rhesus Macacus
    Conflict of interest: The authors have no conflict of interest to report.
  • loading
  • [1]
    Landsteiner K. Ueber Agglutinationserscheinungen normalen menschlichen Blutes[J]. Wien Klin Wochenschr, 1901, 46: 1132-1134. http://ci.nii.ac.jp/naid/10016218927
    International Society of Blood Transfusion (ISBT). Ta-ble of blood group systems[EB/OL]. [2020-06-18]. http://www.isbtweb.org/fileadmin/user_upload/Table_of_blood_group_systems_v6.0_6th_August_2019.pdf.
    Misevic G. ABO blood group system[J]. Asia-Pacific J Blood Type Gene, 2018, 2(2): 71-84.
    Malomgre W, Neumeister B. Recent and future trends in blood group typing[J]. Anal Bioanal Chem, 2009, 393(5): 1443-1451. doi: 10.1007/s00216-008-2411-3
    Langston MM, Procter JL, Cipolone KM, et al. Evaluation of the gel system for ABO grouping and D typing[J]. Transfusion, 1999, 39(3): 300-305. doi: 10.1046/j.1537-2995.1999.39399219288.x
    Liu Z, Liu MH, Mercado T, et al. Extended blood group molecular typing and next-generation sequencing[J]. Transfus Med Rev, 2014, 28(4): 177-186. doi: 10.1016/j.tmrv.2014.08.003
    Yamada A, Renault R, Chikina A, et al. T ransient microfluidic compartmentalization using actionable microfilaments for biochemical assays, cell culture and organs-on-chip[J]. Lab Chip, 2016, 16(24): 4691-4701. doi: 10.1039/C6LC01143H
    Petrik J. Microarray technology: the future of blood testing?[J]. Vox Sang, 2001, 80(1): 1-11. doi: 10.1046/j.1423-0410.2001.00010.x
    Dong YF, Fu WW, Zhou Z, et al. ABO blood group detection based on image processing technology[C]//2017 2nd International Conference on Image, Vision and Computing (ICIVC), 2017: 655-659.
    Mujahid A, Dickert FL. Blood group typing: from classical strategies to the application of synthetic antibodies generated by molecular imprinting[J]. Sensors (Basel), 2015, 16(1): 51. doi: 10.3390/s16010051
    Sautner É, Papp K, Holczer E, et al. Detection of red blood cell surface antigens by probe-triggered cell collision and flow retardation in an autonomous microfluidic system[J]. Sci Rep, 2017, 7(1): 1008. doi: 10.1038/s41598-017-01166-9
    Karimi S, Mehrdel P, Farré-Lladós J, et al. A passive portable microfluidic blood-plasma separator for simultaneous determination of direct and indirect ABO/Rh blood typing[J]. Lab Chip, 2019, 19(19): 3249-3260. doi: 10.1039/C9LC00690G
    Kline TR, Runyon MK, Pothiawala M, et al. ABO, D blood typing and subtyping using plug-based microfluidics[J]. Anal Chem, 2008, 80(16): 6190-6197. doi: 10.1021/ac800485q
    Jy C, Huang YT, Chou HH, et al. Rapid and inexpensive blood typing on thermoplastic chips[J]. Lab Chip, 2015, 15(24): 4533-4541. doi: 10.1039/C5LC01172H
    Park J, Park JK. Finger-actuated microfluidic display for smart blood typing[J]. Anal Chem, 2019, 91(18): 11636-11642. doi: 10.1021/acs.analchem.9b02129
    Lu CH, Shih TS, Shih PC, et al. Finger-powered agglutination lab chip with CMOS image sensing for rapid point-of-care diagnosis applications[J]. Lab Chip, 2020, 20(2): 424-433. doi: 10.1039/C9LC00961B
    Chen YW, Li WT, Chang Y, et al. Blood-typing and irregular antibody screening through multi-channel microfluidic discs with surface antifouling modification[J]. Biomicrofluidics, 2019, 13(3): 034107. doi: 10.1063/1.5080463
    Chang YJ, Lin YT, Liao CC. Chamfer-type capillary stop valve and its microfluidic application to blood typing tests[J]. SLAS Technology, 2019, 24(2): 188-195. http://www.researchgate.net/publication/328521221_Chamfer-Type_Capillary_Stop_Valve_and_Its_Microfluidic_Application_to_Blood_Typing_Tests
    Zhai Y, Wang A, Koh D, et al. A robust, portable and backflow-free micromixing device based on both capillary-and vacuum-driven flows[J]. Lab Chip, 2018, 18(2): 276-284. doi: 10.1039/C7LC01077J
    Chang YJ, Fan YH, Chen SC, et al. An automatic Lab-on-disc system for blood typing[J]. SLAS Technology, 2018, 23(2): 172-178. http://www.ncbi.nlm.nih.gov/pubmed/29241020
    Martinez AW, Phillips ST, Butte MJ, et al. Patterned paper as a platform for inexpensive, low-volume, portable bioassays[J]. Angew Chem Int Ed Engl, 2007, 46(8): 1318-1320. doi: 10.1002/anie.200603817
    Songjaroen T, Dungchai W, Chailapakul O, et al. Blood separation on microfluidic paper-based analytical devices[J]. Lab Chip, 2012, 12(18): 3392-3398. doi: 10.1039/c2lc21299d
    Yamada K, Shibata H, Suzuki K, et al. Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges[J]. Lab Chip, 2017, 17(7): 1206-1249. doi: 10.1039/C6LC01577H
    Ma J, Yan SQ, Miao CY, et al. Paper microfluidics for cell analysis[J]. Adv Healthc Mater, 2019, 8(1): e1801084. doi: 10.1002/adhm.201801084
    Li H, Steckl AJ. Paper microfluidics for point-of-care Blood-Based analysis and diagnostics[J]. Anal Chem, 2019, 91(1): 352-371. doi: 10.1021/acs.analchem.8b03636
    Songjaroen T, Primpray V, Manosarn T, et al. A simple and low-cost portable paper-based ABO blood typing device for point-of-care testing[J]. J Immunoassay Immunochem, 2018, 39(3): 292-307. doi: 10.1080/15321819.2018.1486856
    Cao R, Pan Z, Tang H, et al. Understanding the coffeering effect of red blood cells for engineering paper-based blood analysis devices[J]. Chem Eng J, 2020, 391: 123522. doi: 10.1016/j.cej.2019.123522
    Then WL, Li M, Mcliesh H, et al. The detection of blood group phenotypes using paper diagnostics[J]. Vox Sang, 2015, 108(2): 186-196. doi: 10.1111/vox.12195
    Li M, Then WL, Li L, et al. Paper-based device for rapid typing of secondary human blood groups[J]. Anal Bioanal Chem, 2014, 406(3): 669-677. doi: 10.1007/s00216-013-7494-9
    Henderson CA, Mcliesh H, Then WL, et al. Activity and longevity of antibody in paper-based blood typing diagnostics[J]. Frontiers in Chemistry, 2018, 6: 193. doi: 10.3389/fchem.2018.00193
    Ballerini DR, Li X, Shen W. An inexpensive thread-based system for simple and rapid blood grouping[J]. Anal Bioanal Chem, 2011, 399(5): 1869-1875. doi: 10.1007/s00216-010-4588-5
    Llopis F, Carbonell-Uberos F, Planelles MD, et al. A new microplate red blood cell monolayer technique for screening and identifying red blood cell antibodies[J]. Vox Sang, 1996, 70(3): 152-156. doi: 10.1111/j.1423-0410.1996.tb01314.x
    Llopis F, Carbonell-Uberos F, Planelles MD, et al. A monolayer coagglutination microplate technique for typing red blood cells[J]. Vox Sang, 1997, 72(1): 26-30. doi: 10.1159/000461953
    Spindler JH, Klüter H, Kerowgan M. A novel microplate agglutination method for blood grouping and reverse typing without the need for centrifugation[J]. Transfusion, 2001, 41(5): 627-632. doi: 10.1046/j.1537-2995.2001.41050627.x
    Sinor LT, Rachel JM, Beck ML, et al. Solid-phase ABO grouping and Rh typing[J]. Transfusion, 1985, 25(1): 21-23. doi: 10.1046/j.1537-2995.1985.25185116494.x
    Parker JL, Marcoux D, Hafleigh EB, et al. Modified microtiter tray method for blood typing[J]. Transfusion, 1978, 18(4): 417-422. doi: 10.1046/j.1537-2995.1978.18478251234.x
    Spindler JH, Kerowgan M, Eichler H, et al. Photometric evaluation of the solid-phase antiglobulin test using length measurement of the absorption curve[J]. Vox Sang, 1998, 74(1): 36-41. doi: 10.1046/j.1423-0410.1998.7410036.x
    Sandler SG, Langeberg A, Avery N, et al. A fully automated blood typing system forhospital transfusion services[J]. Transfusion, 2000, 40(2): 201-207. doi: 10.1046/j.1537-2995.2000.40020201.x
    Pipatpanukul C, Amarit R, Somboonkaew A, et al. Microfluidic PMMA-based microarray sensor chip with imaging analysis for ABO and RhD blood group typing[J]. Vox Sang, 2016, 110(1): 60-69. doi: 10.1111/vox.12313
    Lu Y, Shi W, Jiang L, et al. Rapid prototyping of paper--based microfluidics with wax for low-cost, portable bioassay[J]. Electrophoresis, 2009, 30(9): 1497-1500. doi: 10.1002/elps.200800563
    Carrilho E, Martinez AW, Whitesides GM. Understand-ing wax printing: a simple micropatterning process for paper-based microfluidics[J]. Anal Chem, 2009, 81(16): 7091-7095. doi: 10.1021/ac901071p
    Songjaroen T, Laiwattanapaisal W. Simultaneous forward and reverse ABO blood group typing using a paper-based device and barcode-like interpretation[J]. Anal Chim Acta, 2016, 921: 67-76. doi: 10.1016/j.aca.2016.03.047
    Noiphung J, Talalak K, Hongwarittorrn I, et al. A novel paper-based assay for the simultaneous determination of Rh typing and forward and reverse ABO blood groups[J]. Biosens Bioelectron, 2015, 67: 485-489. doi: 10.1016/j.bios.2014.09.011
    Chen L, Wang X, Lu W, et al. Molecular imprinting: perspectives and applications[J]. Chem Soc Rev, 2016, 45(8): 2137-2211. doi: 10.1039/C6CS00061D
    Saylan Y, Akgönüllü S, Yavuz H, et al. Molecularly imprinted polymer based sensors for medical applications[J]. Sensors (Basel), 2019, 19(6): 1279. doi: 10.3390/s19061279
    Piletsky SS, Rabinowicz S, Yang Z, et al. Development of molecularly imprinted polymers specific for blood antigens for application in antibody-free blood typing[J]. Chem Commun (Camb), 2017, 53(11): 1793-1796. doi: 10.1039/C6CC08716G
    Huet M, Cubizolles M, Buhot A. Real time observation and automated measurement of red blood cells agglutination inside a passive microfluidic biochip containing embedded reagents[J]. Biosens Bioelectron, 2017, 93: 110-117. doi: 10.1016/j.bios.2016.09.068
    Huet M, Cubizolles M, Buhot A. Red blood cell agglutination for blood typing within passive microfluidic biochips[J]. High-throughput, 2018, 7(2): 10. doi: 10.3390/ht7020010
    Chen G, Chai HH, Yu L, et al. Smartphone supported backlight illumination and image acquisition for microfluidic-based point-of-care testing[J]. Biomed Opt Express, 2018, 9(10): 4604-4612. doi: 10.1364/BOE.9.004604
    Srivastava SK, Daggolu PR, Burgess SC, et al. Dielectrophoretic characterization of erythrocytes: positive ABO blood types[J]. Electrophoresis, 2008, 29(24): 5033-5046. doi: 10.1002/elps.200800166
    Mujahid A, Mustafa G, Dickert FL. Label-Free bioanalyte detection from nanometer to micrometer dimensions-molecular imprinting and QCMs[J]. Biosensors, 2018, 8(2): 52. doi: 10.3390/bios8020052
    Hayden O, Mann KJ, Krassnig S, et al. Biomimetic ABO blood-group typing[J]. Angew Chem Int Ed Engl, 2006, 45(16): 2626-2629. doi: 10.1002/anie.200502857
    Li Y, Jiang C. Trypsin electrochemical sensing using two-dimensional molecularly imprinted polymers on 96-well microplates[J]. Biosens Bioelectron, 2018, 119: 18-24. doi: 10.1016/j.bios.2018.07.067
    Wang J, Lin J, Huang Z, et al. Study of ABO blood types by combining membrane electrophoresis with surface-enhanced Raman spectroscopy[C]. Beijing, China: Society of Photo-Optical Instrumentation Engineers, 2012: 855323.
    Then WL, Aguilar M, Garnier G. Quantitative blood group typing using surface plasmon resonance[J]. Biosens Bioelectron, 2015, 73: 79-84. doi: 10.1016/j.bios.2015.05.053
    Kazuki N, Ushijima H, Akase S, et al. The rapid mea- surement of ABO blood type by using surface-plasmon resonance sensor[J]. Bunseki Kagaku, 1999, 48(7): 669-672. doi: 10.2116/bunsekikagaku.48.669
    Zhou J, Zeng Y, Wang X, et al. The capture of antibodies by antibody-binding proteins for ABO blood typing using SPR imaging-based sensing technology[J]. Sens Actuators B: Chem, 2020, 304: 127391. doi: 10.1016/j.snb.2019.127391
    Charrière K, Rouleau A, Gaiffe O, et al. Biochip technology applied to an automated ABO compatibility test at the patient bedside[J]. Sens Actuators B Chem, 2015, 208: 67-74. doi: 10.1016/j.snb.2014.10.123
    Peungthum P, Sudprasert K, Amarit RA, et al. Surface plasmon resonance imaging for ABH antigen detection on red blood cells and in saliva: secretor status-related ABO subgroup identification[J]. Analyst, 2017, 142(9): 1471-1481. doi: 10.1039/C7AN00027H
    Li XM, Feng HB, Wang Y, et al. Capture of red blood cells onto optical sensor for rapid ABO blood group typing and erythrocyte counting[J]. Sens Actuators B Chem, 2018, 262: 411-417. doi: 10.1016/j.snb.2018.02.030
    St-Louis M. Molecular blood grouping of donors[J]. Transfus Apher Sci, 2014, 50(2): 175-182. doi: 10.1016/j.transci.2014.02.012
    Wagner FF, Flegel WA, Bittner R, et al. Molecular typing for blood group antigens within 40 min by direct polymerase chain reaction from plasma or serum[J]. Br J Haematol, 2017, 176(5): 814-821. doi: 10.1111/bjh.14469
    Polin H, Danzer M, Pröll J, et al. Introduction of a real-time-based blood-group genotyping approach[J]. Vox Sang, 2008, 95(2): 125-130. doi: 10.1111/j.1423-0410.2008.01067.x
    Moulds JM. Future of molecular testing for red blood cell antigens[J]. Clin Lab Med, 2010, 30(2): 419-429. doi: 10.1016/j.cll.2010.02.004
    Dammika PM, Morrissey YC, Alexander JS, et al. On-chip PCR amplification of genomic and viral templates in unprocessed whole blood[J]. Microfluid Nanofluidics, 2011, 10(3): 697-702. doi: 10.1007/s10404-010-0702-4
    Fürst D, Tsamadou C, Neuchel C, et al. next-generation sequencing technologies in blood group typing[J]. Transfus Med Hemother, 2020, 47(1): 4-13. doi: 10.1159/000504765
    Tounsi WA, Madgett TE, Avent ND. Complete RHD next-generation sequencing: establishment of reference RHD alleles[J]. Blood Advances, 2018, 2(20): 2713-2723. doi: 10.1182/bloodadvances.2018017871
    Henley RY, Carson S, Wanunu M. Studies of RNA sequence and structure using nanopores[J]. Prog Mol Biol Transl Sci, 2016, 139: 73-99. http://pubmedcentralcanada.ca/pmcc/articles/PMC5146985/
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (90) PDF downloads(12) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint