Gradimir Misevic. Single cell human genomic analyses: a way to refine the knowledge of cellular heterogeneity origins in individual subject[J]. Blood&Genomics, 2021, 5(2): 83-96. DOI: 10.46701/BG.2021022021112
Citation: Gradimir Misevic. Single cell human genomic analyses: a way to refine the knowledge of cellular heterogeneity origins in individual subject[J]. Blood&Genomics, 2021, 5(2): 83-96. DOI: 10.46701/BG.2021022021112

Single cell human genomic analyses: a way to refine the knowledge of cellular heterogeneity origins in individual subject

  • Single cell genomics performed on individual human subjects' tumors, neural tissues, and sperm samples revealed the existence of genetic heterogeneity arising through either mutations in exomes, deletions, recombinations, and duplications of DNA sequences, as well as aneuploidy. These genetic changes happen during cell cycles followed by cell division. The aim of this review is to strictly focus on single cell human genomics and intends to deliver information that can help to refine fundamental knowledge relating to genetic causes of cellular heterogeneity origins in both healthy and disease states. Allogenic heterogeneity as well as heterogeneity origins of cells possessing the same genome with different gene expression patterns is not the subject of this review. Future research still requires: a) improvement for complete and errorless DNA acquisition and sequencing of not only selected parts of the genome, and b) analyses of more samples that contain millions of cells. These data will deliver a more precise comparative representation of genetic diversity among single cells in an individual human subject. Consequently, we will be able to better distinguish between the role of genetic, versus epigenetic, and stochastic factors in the cellular diversity of over 30 trillion cells present in a human body.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return